spinetoram and Dengue

spinetoram has been researched along with Dengue* in 2 studies

Other Studies

2 other study(ies) available for spinetoram and Dengue

ArticleYear
Sublethal exposure to spinetoram impacts life history traits and dengue virus replication in Aedes aegypti.
    Insect science, 2023, Volume: 30, Issue:2

    Insecticides are anthropogenic environmental stressors and also a common stressor for mosquito vectors. However, the use of insecticides is often guided by short-term efficacy, and the sublethal effect on their target or nontarget species has long been ignored. Here, we analyzed how sublethal exposure of the promising vector-control bioinsecticide spinetoram to Aedes aegypti larvae alter adult performance and susceptibility to dengue virus (DENV) infection. We found that the surviving adult mosquitoes were significantly smaller and exhibited weaker blood-feeding capacity than control females, apart from the extended immature development period. In terms of reproductive potential, although the F

    Topics: Aedes; Animals; Dengue; Dengue Virus; Female; Insecticides; Life History Traits; Virus Replication

2023
Efficacy of larvicides for the control of dengue, Zika, and chikungunya vectors in an urban cemetery in southern Mexico.
    Parasitology research, 2018, Volume: 117, Issue:6

    Many countries in Latin America have recently experienced outbreaks of Zika and chikungunya fever, in additional to the usual burden imposed by dengue, all of which are transmitted by Aedes aegypti in this region. To identify potential larvicides, we determined the toxicity of eight modern insecticides to A. aegypti larvae from a colony that originated from field-collected insects in southern Mexico. The most toxic compounds were pyriproxyfen (which prevented adult emergence) and λ-cyhalothrin, followed by spinetoram, imidacloprid, thiamethoxam, and acetamiprid, with chlorantraniliprole and spiromesifen the least toxic products. Field trails performed in an urban cemetery during a chikungunya epidemic revealed that insecticide-treated ovitraps were completely protected from the presence of Aedes larvae and pupae for 6 and 7 weeks in spinosad (Natular G30) and λ-cyhalothrin-treated traps in both seasons, respectively, compared to 5-6 weeks for temephos granule-treated ovitraps, but was variable for pyriproxyfen-treated ovitraps with and 1 and 5 weeks of absolute control in the dry and rainy seasons, respectively. Insecticide treatments influenced the mean numbers of Aedes larvae + pupae in each ovitrap, mean numbers of eggs laid, and percentage of egg hatch over time in both trials. The dominant species was A. aegypti in both seasons, although the invasive vector Aedes albopictus was more prevalent in the rainy season (26.7%) compared to the dry season (10.2%). We conclude that the granular formulation of spinosad (Natular G30) and a suspension concentrate formulation of λ-cyhalothrin proved highly effective against Aedes spp. in both the dry and rainy seasons in the cemetery habitat in this region.

    Topics: Aedes; Animals; Cemeteries; Chikungunya Fever; Dengue; Drug Combinations; Insect Vectors; Insecticides; Larva; Macrolides; Mexico; Neonicotinoids; Nitriles; Nitro Compounds; ortho-Aminobenzoates; Oxazines; Pupa; Pyrethrins; Pyridines; Spiro Compounds; Temefos; Thiamethoxam; Thiazoles; Zika Virus Infection

2018