sphingosine-phosphorylcholine and Airway-Remodeling

sphingosine-phosphorylcholine has been researched along with Airway-Remodeling* in 1 studies

Other Studies

1 other study(ies) available for sphingosine-phosphorylcholine and Airway-Remodeling

ArticleYear
Sphingosylphosphorylcholine induces α-smooth muscle actin expression in human lung fibroblasts and fibroblast-mediated gel contraction via S1P2 receptor and Rho/Rho-kinase pathway.
    Prostaglandins & other lipid mediators, 2014, Volume: 108

    Chronic airway diseases like COPD and asthma are usually accompanied with airway fibrosis. Myofibroblasts, which are characterized by expression of smooth muscle actin (α-SMA), play an important role in a variety of developmental and pathological processes, including fibrosis and wound healing. Sphingosylphosphorylcholine (SPC), a sphingolipid metabolite, has been implicated in many physiological and pathological conditions. The current study tested the hypothesis that SPC may modulate tissue remodeling by affecting the expression of α-SMA in human fetal lung fibroblast (HFL-1) and fibroblast mediated gel contraction. The results show that SPC stimulates α-SMA expression in HFL-1 and augments HFL-1 mediated collagen gel contraction in a time- and concentration-dependent manner. The α-SMA protein expression and fibroblast gel contraction induced by SPC was not blocked by TGF-β1 neutralizing antibody. However, it was significantly blocked by S1P2 receptor antagonist JTE-013, the Rho-specific inhibitor C3 exoenzyme, and a Rho-kinase inhibitor Y-27632. These findings suggest that SPC stimulates α-SMA protein expression and HFL-1 mediated collagen gel contraction via S1P2 receptor and Rho/Rho kinase pathway, and by which mechanism, SPC may be involved in lung tissue remodeling.

    Topics: Actins; Airway Remodeling; Cells, Cultured; Collagen; Fibroblasts; Gels; Humans; Lung; Phosphorylcholine; Receptors, Lysosphingolipid; rhoA GTP-Binding Protein; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Transcriptional Activation; Transforming Growth Factor beta1

2014