sphingosine-kinase has been researched along with Triple-Negative-Breast-Neoplasms* in 8 studies
8 other study(ies) available for sphingosine-kinase and Triple-Negative-Breast-Neoplasms
Article | Year |
---|---|
Evaluating the antitumor activity of sphingosine-1-phosphate against human triple-negative breast cancer cells with basal-like morphology.
Sphingosine-1-phosphate (S1P) is an important sphingolipid metabolite that regulates a wide range of physiological and pathophysiological processes. Our previous studies show that S1P selectively induces cell apoptosis in human breast cancer luminal A subtype cell line MCF7. In addition, S1P exhibits synergistic effects with chemotherapy drugs against both MCF7 and luminal B subtype cell line MDA-MB-361 at concentration in the high nM to low μM range. In the current study, we evaluated the effect of S1P on proliferation, apoptosis and cytotoxicity towards a panel of nine triple-negative breast cancer with basal-like morphology (TNBC-BL) cell lines (HCC1599, HCC1937, HCC1143, MDA-MB-468, HCC38, HCC70, HCC1806, HCC1187 and DU4475) in the same concentration range. S1P exhibited mild to moderate effects (<20% increase comparted to control) towards the TNBC-BL cell lines except HCC38, HCC70 and HCC1806. Furthermore, it increased cell apoptosis by ~15-20% in all the cell lines compared to the control, and elicited moderate to strong cytotoxic effect towards all cell lines except MDA-MB-468 and HCC1806. However, no synergistic/additive effect was observed between S1P and chemotherapy drug docetaxel for any TNBC-BL cell line. Topics: Antineoplastic Agents; Apoptosis; Breast; Cell Line, Tumor; Cell Proliferation; Cell Survival; Docetaxel; Drug Interactions; Female; Gene Expression Regulation, Neoplastic; Humans; Kaplan-Meier Estimate; Lysophospholipids; Phosphotransferases (Alcohol Group Acceptor); Sphingosine; Sphingosine-1-Phosphate Receptors; Triple Negative Breast Neoplasms | 2020 |
Sphingosine Kinase 1 Signaling Promotes Metastasis of Triple-Negative Breast Cancer.
Topics: Animals; Carrier Proteins; Cell Line, Tumor; Disease-Free Survival; Female; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Mice, Nude; Microfilament Proteins; NF-kappa B; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Triple Negative Breast Neoplasms; Xenograft Model Antitumor Assays | 2019 |
Triple Negative Breast Cancer Depends on Sphingosine Kinase 1 (SphK1)/Sphingosine-1-Phosphate (S1P)/Sphingosine 1-Phosphate Receptor 3 (S1PR3)/Notch Signaling for Metastasis.
BACKGROUND Triple negative breast cancer (TNBC) has a more aggressive recurrence. Previous reports have demonstrated that sphingosine kinase 1 (SphK1) is a crucial regulator of breast cancer progression. However, the correlation of SphK1 with clinical prognosis has been poorly investigated. Thus, we aimed to elaborate the role of SphK1 in TNBC metastasis. MATERIAL AND METHODS We first determined the level of SphK1 in breast cancer tissue samples and breast cancer cells. Furthermore, the expression of HER2 and phosphor-SphK1 (pSphK1) in human breast cancer tissue samples was determined by immunohistochemical analysis. Associations between SphK1 and clinical parameters of tumors were analyzed. The activity of SphK1 was measured by fluorescence analysis. Extracellular sphingosine-1-phosphate (S1P) was detected using an ELISA kit. Associations between SphK1 and metastasis potential were analyzed by Transwell assay. RESULTS Levels of SphK1 in TNBC patients were significantly higher than levels in other patients with other breast tumors. The expression of SphK1 was positively correlated with poor overall survival (OS) and progression-free survival (PFS), as well as poor response to 5-FU and doxorubicin. The depression of SphK1 thus could repress the Notch signaling pathway, reduce migration, and invasion of TNBC cells in vivo and in vitro. Furthermore, silencing of SphK1 by Ad-SPHK1-siRNA or SphK1 inhibitor PF543 sensitized TNBCs to 5-FU and doxorubicin. Our results also indicated that SphK1 inhibition could effectively counteracts tumors metastasis via Notch signaling pathways, indicating a potentially anti-tumor strategy in TNBC. CONCLUSIONS We found that elevated levels of pSphK1 were positive correlation with high expression of S1P, which in turn promoted metastasis of TNBC through S1P/S1PR3/Notch signaling pathway. Topics: Animals; Cell Line, Tumor; Doxorubicin; Drug Synergism; Female; Fluorouracil; Heterografts; Humans; Lysophospholipids; MCF-7 Cells; Methanol; Mice; Mice, Inbred NOD; Mice, SCID; Middle Aged; Neoplasm Metastasis; Neoplasm Recurrence, Local; Phosphotransferases (Alcohol Group Acceptor); Pyrrolidines; Receptor, ErbB-2; Receptors, Lysosphingolipid; Receptors, Notch; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Sulfones; Triple Negative Breast Neoplasms; Up-Regulation | 2018 |
Inhibition of basal-like breast cancer growth by FTY720 in combination with epidermal growth factor receptor kinase blockade.
New molecular targets are needed for women with triple-negative breast cancer (TNBC). This pre-clinical study investigated the combination of the EGFR inhibitor gefitinib with the sphingosine kinase (SphK) inhibitor FTY720 (Fingolimod), aiming to block tumorigenic signaling downstream of IGFBP-3, which is abundantly expressed in basal-like TNBC.. In studies of breast cancer cell growth in culture, proliferation was monitored by IncuCyte live-cell imaging, and protein abundance was determined by western blotting. In vivo studies of mammary tumor growth used two models: orthotopic xenograft tumors derived from three basal-like TNBC cell lines, grown in immune-deficient mice, and syngeneic murine 4T1 tumors grown in immune-competent mice. Protein abundance in tumor tissue was assessed by immunohistochemistry.. Quantitated by live-cell imaging, the inhibitor combination showed synergistic cytostatic activity in basal-like cell lines across several TNBC molecular subtypes, the synergy being decreased by IGFBP-3 downregulation. Suppression of the tumorigenic mediator CD44 by gefitinib was potentiated by FTY720, consistent with CD44 involvement in the targeted pathway. In MDA-MB-468 and HCC1806 orthotopic TNBC xenograft tumors in nude mice, the drug combination inhibited tumor growth and prolonged mouse survival, although this effect was not significant for the gefitinib-resistant cell line HCC70. Combination treatment of murine 4T1 TNBC tumors in syngeneic BALB/c mice was more effective in immune-competent than immune-deficient (nude) mice, and a relative loss of tumor CD3 (T-cell) immunoreactivity caused by FTY720 treatment alone was alleviated by the drug combination, suggesting that, even at an FTY720 dose causing relative lymphopenia, the combination is still effective in an immune-competent setting. Immunohistochemistry of xenograft tumors showed significant enhancement of caspase-3 cleavage and suppression of Ki67 and phospho-EGFR by the drug combination, but SphK1 downregulation occurred only in MDA-MB-468 tumors, so is unlikely to be integral to treatment efficacy.. Our data indicate that targeting IGFBP-3-dependent signaling pathways through gefitinib-FTY720 co-therapy may be effective in many basal-like breast cancers, and suggest tissue IGFBP-3 and CD44 measurement as potential biomarkers of treatment efficacy. Topics: Animals; Caspase 3; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; ErbB Receptors; Fingolimod Hydrochloride; Gefitinib; Gene Expression Regulation, Neoplastic; Humans; Hyaluronan Receptors; Insulin-Like Growth Factor Binding Protein 3; Mice; Phosphotransferases (Alcohol Group Acceptor); Protein Kinase Inhibitors; Quinazolines; Signal Transduction; Triple Negative Breast Neoplasms; Xenograft Model Antitumor Assays | 2017 |
Metastatic triple-negative breast cancer is dependent on SphKs/S1P signaling for growth and survival.
About 40,000 American women die from metastatic breast cancer each year despite advancements in treatment. Approximately, 15% of breast cancers are triple-negative for estrogen receptor, progesterone receptor, and HER2. Triple-negative cancer is characterized by more aggressive, harder to treat with conventional approaches and having a greater possibility of recurrence. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid signaling mediator has emerged as a key regulatory molecule in breast cancer progression. Therefore, we investigated whether cytosolic sphingosine kinase type 1 (SphK1) and nuclear sphingosine kinase type 2 (SphK2), the enzymes that make S1P are critical for growth and PI3K/AKT, ERK-MAP kinase mediated survival signaling of lung metastatic variant LM2-4 breast cancer cells, generated from the parental triple-negative MDA-MB-231 human breast cancer cell line. Similar with previous report, SphKs/S1P signaling is critical for the growth and survival of estrogen receptor positive MCF-7 human breast cancer cells, was used as our study control. MDA-MB-231 did not show a significant effect of SphKs/S1P signaling on AKT, ERK, and p38 pathways. In contrast, LM2-4 cells that gained lung metastatic phenotype from primary MDA-MB-231 cells show a significant effect of SphKs/S1P signaling requirement on cell growth, survival, and cell motility. PF-543, a selective potent inhibitor of SphK1, attenuated epidermal growth factor (EGF)-mediated cell growth and survival signaling through inhibition of AKT, ERK, and p38 MAP kinase pathways mainly in LM2-4 cells but not in parental MDA-MB-231 human breast cancer cells. Moreover, K-145, a selective inhibitor of SphK2, markedly attenuated EGF-mediated cell growth and survival of LM2-4 cells. We believe this study highlights the importance of SphKs/S1P signaling in metastatic triple-negative breast cancers and targeted therapies. Topics: Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Down-Regulation; Epidermal Growth Factor; Female; Humans; Lysophospholipids; Neoplasm Metastasis; Phosphotransferases (Alcohol Group Acceptor); Protein Kinase Inhibitors; RNA, Small Interfering; Signal Transduction; Sphingosine; Triple Negative Breast Neoplasms | 2017 |
Breast cancer sphingosine-1-phosphate is associated with phospho-sphingosine kinase 1 and lymphatic metastasis.
Sphingosine-1-phosphate (S1P), a pleiotropic bioactive lipid mediator, has been implicated as a key regulatory molecule in cancer through its ability to promote cell proliferation, migration, angiogenesis, and lymphangiogenesis. Previous studies suggested that S1P produced by sphingosine kinase 1 (SphK1) in breast cancer plays important roles in progression of disease and metastasis. However, the associations between S1P and clinical parameters in human breast cancer have not been well investigated to date.. We determined levels of S1P and other sphingolipids in breast cancer tissue by electrospray ionization-tandem mass spectrometry. Associations between S1P levels and clinicopathologic features of the tumors were analyzed. Expression of phospho-SphK1 (pSphK1) in breast cancer tissues was determined by immunohistochemical scoring.. Levels of S1P in breast cancer tissues were significantly higher in patients with high white blood cell count in the blood than those patients without. S1P levels were lower in patients with human epidermal growth factor receptor 2 overexpression and/or amplification than those patients without. Furthermore, cancer tissues with high pSphK1 expression showed significantly higher levels of S1P than cancer tissues without. Finally, patients with lymph node metastasis showed significantly higher levels of S1P in tumor tissues than the patients with negative nodes.. To our knowledge, this is the first study to demonstrate that high expression of pSphK1 is associated with higher levels of S1P, which in turn is associated with lymphatic metastasis in breast cancer. Topics: Breast Neoplasms; Female; Genes, erbB-2; Humans; Lymphatic Metastasis; Lysophospholipids; Middle Aged; Phosphotransferases (Alcohol Group Acceptor); Receptors, Estrogen; Receptors, Progesterone; Sphingosine; Triple Negative Breast Neoplasms | 2016 |
Inhibition of insulin-like growth factor-binding protein-3 signaling through sphingosine kinase-1 sensitizes triple-negative breast cancer cells to EGF receptor blockade.
The type I EGF receptor (EGFR or ErbB1) and insulin-like growth factor-binding protein-3 (IGFBP-3) are highly expressed in triple-negative breast cancer (TNBC), a particularly aggressive disease that cannot be treated with conventional therapies targeting the estrogen or progesterone receptors (ER and PR), or HER2. We have shown previously in normal breast epithelial cells that IGFBP-3 potentiates growth-stimulatory signaling transduced by EGFR, and this is mediated by the sphingosine kinase-1 (SphK1)/sphingosine 1-phosphate (S1P) system. In this study, we investigated whether cotargeting the EGFR and SphK1/S1P pathways in TNBC cells results in greater growth inhibition compared with blocking either alone, and might therefore have novel therapeutic potential in TNBC. In four TNBC cell lines, exogenous IGFBP-3 enhanced ligand-stimulated EGFR activation, associated with increased SphK1 localization to the plasma membrane. The effect of exogenous IGFBP-3 on EGFR activation was blocked by pharmacologic inhibition or siRNA-mediated silencing of SphK1, and silencing of endogenous IGFBP-3 also suppressed EGF-stimulated EGFR activation. Real-time analysis of cell proliferation revealed a combined effect of EGFR inhibition by gefitinib and SphK1 inhibition using SKi-II. Growth of MDA-MB-468 xenograft tumors in mice was significantly inhibited by SKi-II and gefitinib when used in combination, but not as single agents. We conclude that IGFBP-3 promotes growth of TNBC cells by increasing EGFR signaling, that this is mediated by SphK1, and that combined inhibition of EGFR and SphK1 has potential as an anticancer therapy in TNBC in which EGFR and IGFBP-3 expression is high. Topics: Animals; Blotting, Western; Cell Line, Tumor; Cell Proliferation; ErbB Receptors; Female; Gefitinib; Gene Expression Regulation, Neoplastic; Humans; Insulin-Like Growth Factor Binding Protein 3; MCF-7 Cells; Mice, Inbred BALB C; Mice, Nude; Phosphotransferases (Alcohol Group Acceptor); Protein Kinase Inhibitors; Quinazolines; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; Signal Transduction; Thiazoles; Triple Negative Breast Neoplasms; Xenograft Model Antitumor Assays | 2014 |
SPHK1 regulates proliferation and survival responses in triple-negative breast cancer.
Triple-negative breast cancer (TNBC) is characterized by unique aggressive behavior and lack of targeted therapies. Among the various molecular subtypes of breast cancer, it was observed that TNBCs express elevated levels of sphingosine kinase 1 (SPHK1) compared to other breast tumor subtypes. High levels of SPHK1 gene expression correlated with poor overall and progression- free survival, as well as poor response to Doxorubicin-based treatment. Inhibition of SPHK1 was found to attenuate ERK1/2 and AKT signaling and reduce growth of TNBC cells in vitro and in a xenograft SCID mouse model. Moreover, SPHK1 inhibition by siRNA knockdown or treatment with SKI-5C sensitizes TNBCs to chemotherapeutic drugs. Our findings suggest that SPHK1 inhibition, which effectively counteracts oncogenic signaling through ERK1/2 and AKT pathways, is a potentially important anti-tumor strategy in TNBC. A combination of SPHK1 inhibitors with chemotherapeutic agents may be effective against this aggressive subtype of breast cancer. Topics: Animals; Cell Line, Tumor; Cell Proliferation; Cell Survival; Female; Heterografts; Humans; MCF-7 Cells; Mice; Mice, SCID; Phosphotransferases (Alcohol Group Acceptor); Transfection; Triple Negative Breast Neoplasms | 2014 |