sphingosine-kinase and Parkinson-Disease

sphingosine-kinase has been researched along with Parkinson-Disease* in 5 studies

Reviews

2 review(s) available for sphingosine-kinase and Parkinson-Disease

ArticleYear
Novelty of Sphingolipids in the Central Nervous System Physiology and Disease: Focusing on the Sphingolipid Hypothesis of Neuroinflammation and Neurodegeneration.
    International journal of molecular sciences, 2021, Jul-08, Volume: 22, Issue:14

    For decades, lipids were confined to the field of structural biology and energetics as they were considered only structural constituents of cellular membranes and efficient sources of energy production. However, with advances in our understanding in lipidomics and improvements in the technological approaches, astounding discoveries have been made in exploring the role of lipids as signaling molecules, termed bioactive lipids. Among these bioactive lipids, sphingolipids have emerged as distinctive mediators of various cellular processes, ranging from cell growth and proliferation to cellular apoptosis, executing immune responses to regulating inflammation. Recent studies have made it clear that sphingolipids, their metabolic intermediates (ceramide, sphingosine-1-phosphate, and N-acetyl sphingosine), and enzyme systems (cyclooxygenases, sphingosine kinases, and sphingomyelinase) harbor diverse yet interconnected signaling pathways in the central nervous system (CNS), orchestrate CNS physiological processes, and participate in a plethora of neuroinflammatory and neurodegenerative disorders. Considering the unequivocal importance of sphingolipids in CNS, we review the recent discoveries detailing the major enzymes involved in sphingolipid metabolism (particularly sphingosine kinase 1), novel metabolic intermediates (N-acetyl sphingosine), and their complex interactions in CNS physiology, disruption of their functionality in neurodegenerative disorders, and therapeutic strategies targeting sphingolipids for improved drug approaches.

    Topics: Alzheimer Disease; Central Nervous System; Ceramides; Eicosanoids; Forecasting; Homeostasis; Humans; Inflammation; Lipoxygenase; Lysophospholipids; Membrane Lipids; Models, Biological; Nerve Degeneration; Neurodegenerative Diseases; Neuroglia; Neurons; Parkinson Disease; Phosphotransferases (Alcohol Group Acceptor); Prostaglandin-Endoperoxide Synthases; Sphingolipids; Sphingosine

2021
Sphingolipids in neuroinflammation: a potential target for diagnosis and therapy.
    BMB reports, 2020, Volume: 53, Issue:1

    Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes that function as signaling molecules for regulating a diverse range of cellular processes, including cell proliferation, growth, survival, immune-cell trafficking, vascular and epithelial integrity, and inflammation. Recently, several studies have highlighted the pivotal role of sphingolipids in neuroinflammatory regulation. Sphingolipids have multiple functions, including induction of the expression of various inflammatory mediators and regulation of neuroinflammation by directly effecting the cells of the central nervous system. Accumulating evidence points to sphingolipid engagement in neuroinflammatory disorders, including Alzheimer's and Parkinson's diseases. Abnormal sphingolipid alterations, which involves an increase in ceramide and a decrease in sphingosine kinase, are observed during neuroinflammatory disease. These trends are observed early during disease development, and thus highlight the potential of sphingolipids as a new therapeutic and diagnostic target for neuroinflammatory diseases. [BMB Reports 2020; 53(1): 28-34].

    Topics: Alzheimer Disease; Central Nervous System; Ceramides; Humans; Inflammation; Lysophospholipids; Microglia; Parkinson Disease; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Sphingolipids; Sphingosine

2020

Other Studies

3 other study(ies) available for sphingosine-kinase and Parkinson-Disease

ArticleYear
Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson's disease by activation of sphingosine kinase 1 and Akt kinase.
    Neuropharmacology, 2018, Volume: 135

    Parkinson's disease (PD) is one of the most severe neurodegenerative diseases with unknown pathogenesis and currently unsuccessful therapies. Recently, neuroprotection via sphingosine-1-phosphate (S1P)-dependent signalling has become a promising target for the treatment of neurodegenerative disorders. Our previous study demonstrated down-regulation and inhibition of the S1P-synthesizing enzyme sphingosine kinase 1 (SPHK1) in a PD cellular model. Moreover, we have previously identified a neuroprotective effect of fingolimod (FTY720), a first S1P receptor modulator utilized in the clinic. This study focused on the effects of FTY720 and the dopamine D2/D3 receptor agonist pramipexole (PPX) in a PD mouse model, induced by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Administration of FTY720, similar to PPX, abolished an observed loss of tyrosine hydroxylase (TH) immunoreactivity in MPTP-lesioned brain regions. Moreover, significant changes in SPHK1 expression/activity in MPTP-lesioned mouse midbrain were identified. PPX, but not FTY720 treatment, significantly protected against these alterations. Both drugs activate another pro-survival enzyme, Akt kinase, which is a crucial protein downstream of S1PR(s). FTY720 increased BAD protein phosphorylation and in this way may protect mitochondria against the BAD-induced apoptotic signalling pathway. Both FTY720 and PPX enhanced the locomotor activity of PD mice in the rotarod tests. Our data suggest a neuroprotective role for FTY720 related to the S1PR/Akt kinase signalling pathways as a beneficial treatment target in planning new PD therapeutic options. Moreover, our findings have shed new light on a neuroprotective mechanism of PPX action associated with SPHK1 activation, which provides an opportunity for evaluating multi-target (SPHK1/S1P/S1PR) effects in the context of PD.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; bcl-Associated Death Protein; Brain; Fingolimod Hydrochloride; Male; Mice; MPTP Poisoning; Neuroprotection; Parkinson Disease; Phosphorylation; Phosphotransferases (Alcohol Group Acceptor); Pramipexole; Proto-Oncogene Proteins c-akt; Rotarod Performance Test; Tyrosine 3-Monooxygenase

2018
Sphingosine kinase 1 and sphingosine-1-phosphate in oxidative stress evoked by 1-methyl-4-phenylpyridinium (MPP+) in human dopaminergic neuronal cells.
    Molecular neurobiology, 2014, Volume: 50, Issue:1

    Sphingosine kinases (Sphk1/2) are crucial enzymes in regulation of the biostat between sphingosine-1-phosphate (S1P) and ceramide and play an important role in the pathogenesis/pathomechanism of Alzheimer's disease (AD). These enzymes synthesise S1P, which regulates neurotransmission, synaptic function and neuron cell proliferation, by activating five G protein-coupled receptors (S1P1-5). However, S1P synthesised by Sphk2 could be involved in amyloid β (Aβ) release by stimulation of Aβ precursor protein degradation. The significance of this bioactive sphingolipid in the pathogenesis of Parkinson's disease (PD) is unknown. The aim of our study was to investigate the expression level of Sphk1 and its role in human dopaminergic neuronal cell (SH-SY5Y) viability under oxidative stress, evoked by 1-methyl-4-phenylpyridinium (MPP+). Moreover, the mechanism of S1P action on the death signalling pathway in these experimental conditions was evaluated. Our study indicated marked downregulation of Sphk1 expression in this cellular PD model. Inhibition of Sphk1 decreased SH-SY5Y cell viability and concomitantly enhanced the reactive oxygen species (ROS) level. It was found that exogenous S1P (1 μM) exerted the neuroprotective effect by activation of Sphk1 and S1P1 receptor gene expression. Moreover, S1P downregulated Bax and harakiri, death protein 5 (Hrk/DP5) expression and enhanced cell viability in MPP+-treated cells. The neuroprotective mechanism of S1P is mainly dependent on S1P1 receptor signalling, which was indicated by using specific agonists and antagonists of S1P1 receptor. The results show that S1P and S1P1 receptor agonists protected a significant population of neuronal cells against death.

    Topics: 1-Methyl-4-phenylpyridinium; Cell Line, Tumor; Ceramides; Dopaminergic Neurons; Humans; Lysophospholipids; Oxidative Stress; Parkinson Disease; Phosphotransferases (Alcohol Group Acceptor); Reactive Oxygen Species; Signal Transduction; Sphingosine

2014
The key role of sphingosine kinases in the molecular mechanism of neuronal cell survival and death in an experimental model of Parkinson's disease.
    Folia neuropathologica, 2014, Volume: 52, Issue:3

    Sphingosine kinases (Sphk1/2 EC 2.7.1.91) are responsible for synthesis of sphingosine-1-phosphate (S1P) and for regulation of the bioactive sphingolipids homeostasis. Sphingosine-1-phosphate can act as a potent messenger in an autocrine/paracrine manner through five specific G protein-coupled receptors (GPCR) S1P1-5. This sphingolipid is involved in the mechanism of transcription, mitochondrial function, neuronal viability and degeneration. Until now the involvement of Sphk1/2 and sphingolipid alterations in Parkinson's disease (PD) remains unknown. Recent studies have indicated the role of sphingolipids in the regulation of alpha-synuclein (ASN) in the PD brain. Our latest data demonstrated significant inhibition of Sphk1 gene expression and activity in an in vitro PD model, induced by 1-methyl-4-phenylpyridinium (MPP+). The aim of this study was to investigate the role of Sphks inhibition in ASN secretion and in the molecular mechanism of neuronal death in the PD model. Our study was carried out using neuronal dopaminergic SH-SY5Y control cells, transfected with the human gene for ASN or with an empty vector. These cells were treated with MPP+ (1-3 mM), which represents an experimental PD model, or with the Sphks inhibitor (1-5 µM SKI II) for 3-24 h. Our data indicated that MPP+ (3 mM) induced significant alterations of Sphks and S1P lyase (SPL) gene expression. Reduced activity of Sphk1 and Sphk2 in the cytosolic fraction and in the crude nuclear fraction, respectively, was observed. Sphks inhibition evoked enhancement of ASN secretion, suppression of PI3K/Akt phosphorylation and activation of gene expression for the pro-apoptotic Bcl-2 proteins Bax and BH3-only protein Harakiri. Moreover, a lower level of cytochrome c in the mitochondrial fraction and caspase-dependent degradation of DNA-bound enzyme poly(ADP-ribose) polymerase (PARP-1) were observed. The caspase inhibitor (20 µM Z-VAD-FMK) significantly enhanced neuronal cell viability in MPP+ oxidative stress. However, exogenous S1P (1 µM) exerted a more efficient neuroprotective effect as compared to Z-VAD-FMK. In summary, these data indicated that Sphk1 inhibition plays an important role in caspase-dependent apoptotic neuronal death in an experimental PD model.

    Topics: alpha-Synuclein; Apoptosis; Cell Line, Tumor; Cell Survival; Humans; Immunohistochemistry; Neurons; Oxidative Stress; Parkinson Disease; Phosphotransferases (Alcohol Group Acceptor); Real-Time Polymerase Chain Reaction; Transcriptome; Transfection

2014