sphingosine-kinase has been researched along with Muscular-Atrophy* in 2 studies
2 other study(ies) available for sphingosine-kinase and Muscular-Atrophy
Article | Year |
---|---|
Involvement of released sphingosine 1-phosphate/sphingosine 1-phosphate receptor axis in skeletal muscle atrophy.
Skeletal muscle (SkM) atrophy is caused by several and heterogeneous conditions, such as cancer, neuromuscular disorders and aging. In most types of SkM atrophy overall rates of protein synthesis are suppressed, protein degradation is consistently elevated and atrogenes, such as the ubiquitin ligase Atrogin-1/MAFbx, are up-regulated. The molecular regulators of SkM waste are multiple and only in part known. Sphingolipids represent a class of bioactive molecules capable of modulating the destiny of many cell types, including SkM cells. In particular, we and others have shown that sphingosine 1phosphate (S1P), formed by sphingosine kinase (SphK), is able to act as trophic and morphogenic factor in myoblasts. Here, we report the first evidence that the atrophic phenotype observed in both muscle obtained from mice bearing the C26 adenocarcinoma and C2C12 myotubes treated with dexamethasone was characterized by reduced levels of active phospho-SphK1. The importance of SphK1 activity is also confirmed by the specific pharmacological inhibition of SphK1 able to increase Atrogin-1/MAFbx expression and reduce myotube size and myonuclei number. Furthermore, we found that SkM atrophy was accomplished by significant increase of S1P transporter Spns2 and in changes in the pattern of S1P receptor (S1PRs) subtype expression paralleled by increased Atrogin-1/MAFbx expression, suggesting a role for the released S1P and of specific S1PR-mediated signaling pathways in the control of the ubiquitin ligase. Altogether, these findings provide the first evidence that SphK1/released S1P/S1PR axis acts as a molecular regulator of SkM atrophy, thereby representing a new possible target for therapy in many patho-physiological conditions. Topics: Animals; Cell Line; Dexamethasone; Female; Lysophospholipids; Mice, Inbred BALB C; Muscle Fibers, Skeletal; Muscular Atrophy; Neoplasms; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid; Signal Transduction; Sphingosine | 2018 |
Trophic action of sphingosine 1-phosphate in denervated rat soleus muscle.
Sphingosine 1-phosphate (S1P) mediates a number of cellular responses, including growth and proliferation. Skeletal muscle possesses the full enzymatic machinery to generate S1P and expresses the transcripts of S1P receptors. The aim of this work was to localize S1P receptors in rat skeletal muscle and to investigate whether S1P exerts a trophic action on muscle fibers. RT-PCR and Western blot analyses demonstrated the expression of S1P(1) and S1P(3) receptors by soleus muscle. Immunofluorescence revealed that S1P(1) and S1P(3) receptors are localized at the cell membrane of muscle fibers and in the T-tubule membranes. The receptors also decorate the nuclear membrane. S1P(1) receptors were also present at the neuromuscular junction. The possible trophic action of S1P was investigated by utilizing the denervation atrophy model. Rat soleus muscle was analyzed 7 and 14 days after motor nerve cut. During denervation, S1P was continuously delivered to the muscle through a mini osmotic pump. S1P and its precursor, sphingosine (Sph), significantly attenuated the progress of denervation-induced muscle atrophy. The trophic effect of Sph was prevented by N,N-dimethylsphingosine, an inhibitor of Sph kinase, the enzyme that converts Sph into S1P. Neutralization of circulating S1P by a specific antibody further demonstrated that S1P was responsible for the trophic effects of S1P during denervation atrophy. Denervation produced the down regulation of S1P(1) and S1P(3) receptors, regardless of the presence of the receptor agonist. In conclusion, the results suggest that S1P acts as a trophic factor of skeletal muscle. Topics: Animals; Antibodies; Cell Enlargement; Cell Membrane; Disease Models, Animal; Enzyme Inhibitors; Hypertrophy; Infusion Pumps, Implantable; Lysophospholipids; Male; Muscle Denervation; Muscle, Skeletal; Muscular Atrophy; MyoD Protein; Myogenin; Myosin Heavy Chains; Neuromuscular Junction; Nuclear Envelope; Phosphotransferases (Alcohol Group Acceptor); Rats; Rats, Wistar; Receptors, Lysosphingolipid; RNA, Messenger; Sciatic Nerve; Sphingosine; Time Factors | 2008 |