sphingosine-kinase has been researched along with Leukemia* in 10 studies
10 other study(ies) available for sphingosine-kinase and Leukemia
Article | Year |
---|---|
Discovery and design of dual inhibitors targeting Sphk1 and Sirt1.
Leukaemia has become a serious threat to human health. Although tyrosine kinase inhibitors (TKIs) have been developed as targets for the remedy of leukaemia, drug resistance occurs. Research demonstrated that the simultaneous targeting of sphingosine kinase 1 (Sphk1) and Sirtuin 1 (Sirt1) can downregulate myeloid cell leukaemia-1 (MCL-1), overcome the resistance of tyrosine kinase inhibitors, and play a synergistic inhibitory impact on leukaemia treatment.. In this study, virtual screening of 7.06 million small molecules was done by sphingosine kinase 1 and Sirtuin 1 pharmacophore models using Schrödinger version 2019; after that, ADME and Toxicity molecule properties were predicted using Discovery Studio. Molecular docking using Schrödinger selected five molecules, which have the best binding affinity with sphingosine kinase 1 and Sirtuin 1. The five molecules and reference inhibitors were constructed with a total of 12 systems with GROMACS that carried out 100 ns molecular dynamics simulation and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculation. Due to compound 3 has the lowest binding energy, its structure was modified. A series of compounds docked with sphingosine kinase 1 and Sirtuin 1, respectively. Among them, QST-LC03, QST-LD05, QST-LE03, and QST-LE04 have the better binding affinity than reference inhibitors. Moreover, the SwissADME and PASS platforms predict that 1, 3, QST-LC03, and QST-LE04 have further study value. Topics: Humans; Leukemia; Molecular Docking Simulation; Molecular Dynamics Simulation; Sirtuin 1 | 2023 |
SphK1 inhibitor potentiates the anti-cancer effect of EGCG on leukaemia cells.
Topics: Antineoplastic Agents; Catechin; Cell Line, Tumor; Cell Survival; Drug Synergism; Enzyme Inhibitors; Gene Expression; Humans; Leukemia; Phosphotransferases (Alcohol Group Acceptor) | 2017 |
Single-cell sphingosine kinase activity measurements in primary leukemia.
Sphingosine kinase (SK) is a promising therapeutic target in a number of cancers, including leukemia. Traditionally, SK has been measured in bulk cell lysates, but this technique obscures the cellular heterogeneity present in this pathway. For this reason, SK activity was measured in single cells loaded with a fluorescent sphingosine reporter. An automated capillary electrophoresis (CE) system enabled rapid separation and quantification of the phosphorylated and nonphosphorylated sphingosine reporter in single cells. SK activity was measured in tissue-cultured cells derived from chronic myelogenous leukemia (K562), primary peripheral blood mononuclear cells (PBMCs) from three patients with different forms of leukemia, and enriched leukemic blasts from a patient with acute myeloid leukemia (AML). Significant intercellular heterogeneity existed in terms of the degree of reporter phosphorylation (as much as an order of magnitude difference), the amount of reporter uptake, and the metabolites formed. In K562 cells, the average amount of reporter converted to the phosphorylated form was 39 ± 26% per cell. Of the primary PBMCs analyzed, the average amount of phosphorylated reporter was 16 ± 25%, 11 ± 26%, and 13 ± 23% in a chronic myelogenous leukemia (CML) patient, an AML patient, and a B-cell acute lymphocytic leukemia (B-ALL) patient, respectively. These experiments demonstrated the challenge of studying samples comprised of multiple cell types, with tumor blasts present at 5 to 87% of the cell population. When the leukemic blasts from a fourth patient with AML were enriched to 99% of the cell population, 19 ± 36% of the loaded sphingosine was phosphorylated. Thus, the diversity in SK activity remained even in a nearly pure tumor sample. These enriched AML blasts loaded significantly less reporter (0.12 ± 0.2 amol) relative to that loaded into the PBMCs in the other samples (≥1 amol). The variability in SK signaling may have important implications for SK inhibitors as therapeutics for leukemia and demonstrates the value of single-cell analysis in characterizing the nature of oncogenic signaling in cancer. Topics: Electrophoresis, Capillary; Humans; K562 Cells; Leukemia; Phosphotransferases (Alcohol Group Acceptor) | 2014 |
Biological characterization of 3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)-propylidene]-thiazolidine-2,4-dione (K145) as a selective sphingosine kinase-2 inhibitor and anticancer agent.
In our effort to develop selective sphingosine kinase-2 (SphK2) inhibitors as pharmacological tools, a thiazolidine-2,4-dione analogue, 3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)-propylidene]-thiazolidine-2,4-dione (K145), was synthesized and biologically characterized. Biochemical assay results indicate that K145 is a selective SphK2 inhibitor. Molecular modeling studies also support this notion. In vitro studies using human leukemia U937 cells demonstrated that K145 accumulates in U937 cells, suppresses the S1P level, and inhibits SphK2. K145 also exhibited inhibitory effects on the growth of U937 cells as well as apoptotic effects in U937 cells, and that these effects may be through the inhibition of down-stream ERK and Akt signaling pathways. K145 also significantly inhibited the growth of U937 tumors in nude mice by both intraperitoneal and oral administration, thus demonstrating its in vivo efficacy as a potential lead anticancer agent. The antitumor activity of K145 was also confirmed in a syngeneic mouse model by implanting murine breast cancer JC cells in BALB/c mice. Collectively, these results strongly encourage further optimization of K145 as a novel lead compound for development of more potent and selective SphK2 inhibitors. Topics: Antineoplastic Agents; Apoptosis; Cell Proliferation; Humans; Leukemia; Models, Molecular; Phosphotransferases (Alcohol Group Acceptor); Protein Kinase Inhibitors; Thiazolidinediones; U937 Cells; Xenograft Model Antitumor Assays | 2013 |
Development of amidine-based sphingosine kinase 1 nanomolar inhibitors and reduction of sphingosine 1-phosphate in human leukemia cells.
Sphingosine 1-phosphate (S1P) is a bioactive lipid that has been identified as an accelerant of cancer progression. The sphingosine kinases (SphKs) are the sole producers of S1P, and thus, SphK inhibitors may prove effective in cancer mitigation and chemosensitization. Of the two SphKs, SphK1 overexpression has been observed in a myriad of cancer cell lines and tissues and has been recognized as the presumptive target over that of the poorly characterized SphK2. Herein, we present the design and synthesis of amidine-based nanomolar SphK1 subtype-selective inhibitors. A homology model of SphK1, trained with this library of amidine inhibitors, was then used to predict the activity of additional, more potent, inhibitors. Lastly, select amidine inhibitors were validated in human leukemia U937 cells, where they significantly reduced endogenous S1P levels at nanomolar concentrations. Topics: Amidines; Antineoplastic Agents; Cell Line, Tumor; Chemistry, Pharmaceutical; Drug Design; Enzyme Inhibitors; Gene Expression Regulation, Leukemic; Humans; Kinetics; Leukemia; Lysophospholipids; Models, Chemical; Models, Molecular; Phosphotransferases (Alcohol Group Acceptor); Sphingosine; U937 Cells | 2011 |
Optimal designs for 2-color microarray experiments.
Statisticians can play a crucial role in the design of gene expression studies to ensure the most effective allocation of available resources. This paper considers Pareto optimal designs for gene expression studies involving 2-color microarrays. Pareto optimality enables the recommendation of designs that are particularly efficient for the effects of most interest to biologists. This is relevant in the microarray context where analysis is typically carried out separately for those effects. Our approach will allow for effects of interest that correspond to contrasts rather than solely considering parameters of the linear model. We further develop the approach to cater for additional experimental considerations such as contrasts that are of equal scientific interest. This amounts to partitioning all relevant contrasts into subsets of effects that are of equal importance. Based on the partitions, a penalty is employed in order to recommend designs for complex and varied microarray experiments. Finally, we address the issue of gene-specific dye bias. We illustrate using studies of leukemia and breast cancer. Topics: Biometry; Breast Neoplasms; Cell Line, Tumor; Color; Female; Fluorescent Dyes; Humans; Leukemia; Linear Models; Oligonucleotide Array Sequence Analysis; Phosphotransferases (Alcohol Group Acceptor) | 2009 |
A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia.
The potent bioactive sphingolipid mediator, sphingosine-1-phosphate (S1P), is produced by 2 sphingosine kinase isoenzymes, SphK1 and SphK2. Expression of SphK1 is up-regulated in cancers, including leukemia, and associated with cancer progression. A screen of sphingosine analogs identified (2R,3S,4E)-N-methyl-5-(4'-pentylphenyl)-2-aminopent-4-ene-1,3-diol, designated SK1-I (BML-258), as a potent, water-soluble, isoenzyme-specific inhibitor of SphK1. In contrast to pan-SphK inhibitors, SK1-I did not inhibit SphK2, PKC, or numerous other protein kinases. SK1-I decreased growth and survival of human leukemia U937 and Jurkat cells, and enhanced apoptosis and cleavage of Bcl-2. Lethality of SK1-I was reversed by caspase inhibitors and by expression of Bcl-2. SK1-I not only decreased S1P levels but concomitantly increased levels of its proapoptotic precursor ceramide. Conversely, S1P protected against SK1-I-induced apoptosis. SK1-I also induced multiple perturbations in activation of signaling and survival-related proteins, including diminished phosphorylation of ERK1/2 and Akt. Expression of constitutively active Akt protected against SK1-I-induced apoptosis. Notably, SK1-I potently induced apoptosis in leukemic blasts isolated from patients with acute myelogenous leukemia but was relatively sparing of normal peripheral blood mononuclear leukocytes. Moreover, SK1-I markedly reduced growth of AML xenograft tumors. Our results suggest that specific inhibitors of SphK1 warrant attention as potential additions to the therapeutic armamentarium in leukemia. Topics: Animals; Apoptosis; Cell Proliferation; Enzyme Inhibitors; Humans; Leukemia; Mice; Mice, SCID; Phosphotransferases (Alcohol Group Acceptor); Proto-Oncogene Proteins c-bcl-2; Sphingosine; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2008 |
Implications of sphingosine kinase 1 expression level for the cellular sphingolipid rheostat: relevance as a marker for daunorubicin sensitivity of leukemia cells.
We recently reported increased sphingosine kinase 1 (SPHK1) and decreased neutral sphingomyelinase 2 (NSMase2) gene expression in myelodysplastic syndromes and acute leukemia. This alteration is supposed to change the cellular sphingolipid metabolites; however, positive correlations were observed between daunorubicin (DA)-IC50 and the SPHK1 message but not between DA-IC50 and NSMase2 messages, when 16 different leukemia cell lines were used to analyze the relationship between gene expressions and chemosensitivity against DA. Using two cell lines with either the highest or lowest SPHK1 expression, cellular ceramides and sphingosine 1-phosphate (S1P) were quantified by liquid chromatography/mass spectrometry. Increased ceramide was observed in DA-sensitive, but not in DA-resistant cell lines treated with low doses of DA. Upon DA treatment, S1P decreased more in the sensitive cell lines than in resistant cell lines. A SPHK inhibitor recovered the DA sensitivity of DA-resistant cells. The modulation of SPHK1 gene expression by either overexpression or using siRNA affected the DA sensitivity of representative cell lines. Results clearly show that SPHK1 is both a good marker to predict the DA sensitivity of leukemia cells and a potential therapeutic target for leukemia with high SPHK1 expression, and suggest that the sphingolipid rheostat plays a significant role in DA-induced cytotoxicity. Topics: Antibiotics, Antineoplastic; Biomarkers; Cell Line, Tumor; Daunorubicin; Drug Resistance, Neoplasm; Gene Expression Profiling; Humans; Leukemia; Lysophospholipids; Phosphotransferases (Alcohol Group Acceptor); Sphingosine | 2008 |
Regulation of sphingosine kinase 1 gene expression by protein kinase C in a human leukemia cell line, MEG-O1.
The prolonged treatment with phorbol 12-myristate 13-acetate (PMA) of a human megakaryoblastic leukemia cell line, MEG-O1, induced increase of sphingosine kinase (SPHK) enzyme activity and SPHK1 protein expression as well as SPHK1 message. Protein kinase C (PKC) inhibitor prevented the PMA-induced SPHK1 gene expression. To elucidate the regulatory mechanism of this gene expression, we examined the promoter area (distal to the first exon) and its binding proteins. Luciferase analyses showed that the area of 300 bp from the first exon was sufficient for PMA-responsiveness, and that specificity protein 1 (Sp1)- and two activator protein 2 (AP-2)-binding motifs within this area were necessary for responsiveness. Inhibitors for PKC and MEK1 decreased this PMA-induced promoter activity. Electrophoresis mobility shift assay (EMSA) showed that Sp1 protein was originally bound to the Sp1 site and that two additional bands bound to the two AP-2 motifs were observed only when stimulated with PMA in MEG-O1 cells. The appearance of these bands resulted from binding to an unknown protein rather than AP-2. These results indicated that PMA up-regulates SPHK1 gene expression through PMA-responsive elements of the 5' promoter area of the gene, and suggested that PMA-mediated SPHK1 gene expression would be mediated via PKC- and ERK-dependent signal transduction pathway by binding the transcription factor to AP-2 motifs. Topics: Binding Sites; Cell Line, Tumor; DNA-Binding Proteins; Electrophoretic Mobility Shift Assay; Gene Expression Regulation, Enzymologic; Humans; Leukemia; Mitogen-Activated Protein Kinases; Oligonucleotide Probes; Phosphotransferases (Alcohol Group Acceptor); Promoter Regions, Genetic; Protein Kinase C; Signal Transduction; Sp1 Transcription Factor; Tetradecanoylphorbol Acetate; Transcription Factor AP-2; Transcription Factors; Transcription, Genetic | 2003 |
Sphingosine kinase inhibitors in the apoptosis of leukaemia cells.
Topics: Apoptosis; Enzyme Inhibitors; Humans; Leukemia; Phosphotransferases (Alcohol Group Acceptor); Sphingosine | 2002 |