sphingosine-kinase has been researched along with Leukemia--Myeloid* in 3 studies
1 review(s) available for sphingosine-kinase and Leukemia--Myeloid
Article | Year |
---|---|
New perspectives on the role of sphingosine 1-phosphate in cancer.
In this chapter, we review the latest developments concerning the role of sphingosine 1-phosphate (S1P) in cancer. Particular focus is paid to the role of sphingosine kinases 1 and 2, S1P lyase and S1P-dependent signalling networks in both solid tumours and haematological cancer. The potential of this S1P-dependent pathophysiology as a therapeutic target for the treatment of cancer is also discussed. Topics: Aldehyde-Lyases; Animals; Antineoplastic Agents; Humans; Leukemia, Myeloid; Lysophospholipids; Molecular Targeted Therapy; Multiple Myeloma; Neoplasms; Oncogenes; Phosphotransferases (Alcohol Group Acceptor); Protein Kinase Inhibitors; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine | 2013 |
2 other study(ies) available for sphingosine-kinase and Leukemia--Myeloid
Article | Year |
---|---|
Resveratrol induces apoptosis of leukemia cell line K562 by modulation of sphingosine kinase-1 pathway.
To explore the effects of resveratrol in a human myelogenous leukemia cell line K562 and its potential molecular mechanisms. The anti-proliferation effect of resveratrol-induced apoptosis on K562 cells were detected using MTT assay. Western blotting was performed for detecting changes of SphK1 expression in total cell protein and membrane/cytosol protein in K562 cells respectively after exposure to resveratrol. A biochemical assay was used to measure the activity of SphK after treatment of resveratrol, and then S1P and ceramide levels were examined using ELISA kits. Hochest 33258 staining and flow cytometry were applied to detect the apoptosis condition of K562 cells treated with resveratrol. Resveratrol inhibited the proliferation and induced apoptosis in K562 cells in a dose and time-dependent manner. Western blotting revealed that resveratrol did not affect total SphK1 expression level in K562 cells, but significantly changed the translocation of SphK1, the membrane SphK1 was decreased while cytosol SphK1 level was elevated. The activity of SphK1 in resveratrol treated groups was decreased compared to control group with a significant decrease of S1P and increase of ceramide level. Furthermore, Hoechst 33258 staining and Annexin V-FITC analysis confirmed the notable apoptotic effect of resveratrol in its anti-leukemia process. Resveratrol-induced proliferation inhibition of K562 cells might be mediated through its modulation activity of SphK1 pathway by regulating S1P and ceramide levels, which then affected the proliferation and apoptosis process of leukemia cells. SphK1/S1P pathway represents a target of resveratrol in human leukemia. Topics: Annexin A5; Antineoplastic Agents; Apoptosis; Cell Membrane; Cell Proliferation; Ceramides; Cytosol; Dose-Response Relationship, Drug; Humans; K562 Cells; Leukemia, Myeloid; Lysophospholipids; Phosphotransferases (Alcohol Group Acceptor); Protein Transport; Resveratrol; Signal Transduction; Sphingosine; Stilbenes; Time Factors | 2015 |
Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1.
We examined the involvement of sphingosine kinase-1, a critical regulator of the sphingolipid balance, in susceptibility to antineoplastic agents of either sensitive or multidrug-resistant acute myeloid leukemia cells. Contrary to parental HL-60 cells, doxorubicin and etoposide failed to trigger apoptosis in chemoresistant HL-60/Doxo and HL-60NP16 cells overexpressing MRP1 and MDR1, respectively. Chemosensitive HL-60 cells displayed sphingosine kinase-1 inhibition coupled with ceramide generation. In contrast, chemoresistant HL-60/ Doxo and HL-60/VP16 had sustained sphingosine kinase-1 activity and did not produce ceramide during treatment. Enforced expression of sphingosine kinase-1 in chemosensitive HL-60 cells resulted in marked inhibition of apoptosis that was mediated by blockade of mitochondrial cytochrome c efflux hence suggesting a control of apoptosis at the pre-mitochondrial level. Incubation with cell-permeable ceramide of chemoresistant cells led to a sphingosine kinase-1 inhibition and apoptosis both prevented by sphingosine kinase-1 over-expression. Furthermore, F-12509a, a new sphingosine kinase inhibitor, led to ceramide accumulation, decrease in sphingosine 1-phosphate content and caused apoptosis equally in chemosensitive and chemoresistant cell lines that is inhibited by adding sphingosine 1-phosphate or overexpressing sphingosine kinase-1. F-12509a induced classical apoptosis hallmarks namely nuclear fragmentation, caspase-3 cleavage as well as downregulation of antiapoptotic XIAP, and release of cytochrome c and SMAC/Diablo. Topics: Acute Disease; Apoptosis; Benzoquinones; Cell Line, Tumor; Cell Survival; Ceramides; Doxorubicin; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Etoposide; HL-60 Cells; Humans; Leukemia, Myeloid; Mitochondria; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid; RNA Interference | 2006 |