sphingosine-kinase and Ischemia

sphingosine-kinase has been researched along with Ischemia* in 6 studies

Reviews

1 review(s) available for sphingosine-kinase and Ischemia

ArticleYear
Platelet-released phospholipids link haemostasis and angiogenesis.
    Cardiovascular research, 2001, Feb-16, Volume: 49, Issue:3

    Considerable attention has focused on identifying mediators of neovascularization at sites of growth and abnormal tissue development. By contrast, mediators of angiogenesis at sites of injury and wound repair are not well defined but factors generated during blood coagulation (haemostasis) are attractive candidates. In addition to proteins generated, activated and released during the activation of clotting cascades, platelet-derived lipid mediators are now known to play a key role in many aspects of the angiogenic response. The first indication of lipid mediator involvement in angiogenesis was the discovery that lysophosphatidate (LPA), phosphatidic acid (PA) and sphingosine 1-phosphate (SPP) are high affinity agonists for G-protein coupled EDG (endothelial differentiation gene) receptors. The prototype for this family, EDG-1, was cloned from genes expressed when endothelial cells were activated to assume an angiogenic phenotype in vitro. The subsequent finding that SPP is a high affinity ligand for EDG-1 led Spiegel, Hla and associates (Lee et al., Science 1998;279:1552-1555) to hypothesize that platelet-released phospholipids play an important role in angiogenesis. These investigators and others demonstrated that SPP, LPA and phosphatidate (PA) induce many important endothelial cell responses associated with angiogenesis, including liberation of endothelial cells from established monolayers, chemotactic migration, proliferation, adherens junction assembly and morphogenesis into capillary-like structures. Although these studies indicated the potential involvement of platelet-derived phospholipids in angiogenesis, their physiological importance was not established. However, recent work demonstrates that >80% of the potent endothelial cell chemoattractive activity generated in human serum during clotting--an activity necessary for optimal angiogenesis--results from platelet-derived SPP. Other factors released from platelets during clotting, including LPA and PA, exert profound effects on endothelial cells that contribute unique aspects to the angiogenic response. These combined studies establish that SPP and other platelet-derived lipid mediators provide a novel link between haemostasis and angiogenesis.

    Topics: Apoptosis; Blood Platelets; Chemotaxis; Endothelium, Vascular; Growth Substances; Hemostasis; Humans; Ischemia; Lysophospholipids; Neovascularization, Physiologic; Phospholipids; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Sphingosine; Wound Healing

2001

Other Studies

5 other study(ies) available for sphingosine-kinase and Ischemia

ArticleYear
Generation of sphingosine-1-phosphate by sphingosine kinase 1 protects nonalcoholic fatty liver from ischemia/reperfusion injury through alleviating reactive oxygen species production in hepatocytes.
    Free radical biology & medicine, 2020, 11-01, Volume: 159

    Nonalcoholic fatty liver (NAFL) is emerging as a leading risk factor of hepatic ischemia/reperfusion (I/R) injury lacking of effective therapy. Lipid dyshomeostasis has been implicated in the hepatopathy of NAFL. Herein, we investigate the bioactive lipids that critically regulate I/R injury in NAFL.. Lipidomics were performed to identify dysregulated lipids in mouse and human NAFL with I/R injury. The alteration of corresponding lipid-metabolizing genes was examined. The effects of the dysregulated lipid metabolism on I/R injury in NAFL were evaluated in mice and primary hepatocytes.. Sphingolipid metabolic pathways responsible for the generation of sphingosine-1-phosphate (S1P) were uncovered to be substantially activated by I/R in mouse NAFL. Sphingosine kinase 1 (Sphk1) was found to be essential for hepatic S1P generation in response to I/R in hepatocytes of NAFL mice. Sphk1 knockdown inhibited the hepatic S1P rise while accumulating ceramides in hepatocytes of NAFL mice, leading to aggressive hepatic I/R injury with upregulation of oxidative stress and increase of reactive oxygen species (ROS). In contrast, administration of exogenous S1P protected hepatocytes of NAFL mice from hepatic I/R injury. Clinical study revealed a significant activation of S1P generation by I/R in liver specimens of NAFL patients. In vitro studies on the L02 human hepatocytes consolidated that inhibiting the generation of S1P by knocking down SPHK1 exaggerated I/R-induced damage and oxidative stress in human hepatocytes of NAFL.. Generation of S1P by SPHK1 is important for protecting NAFL from I/R injury, which may serve as therapeutic targets for hepatic I/R injury in NAFL.

    Topics: Animals; Hepatocytes; Humans; Ischemia; Lysophospholipids; Mice; Non-alcoholic Fatty Liver Disease; Phosphotransferases (Alcohol Group Acceptor); Reactive Oxygen Species; Reperfusion Injury; Signal Transduction; Sphingosine

2020
Berberine Preconditioning Protects Neurons Against Ischemia via Sphingosine-1-Phosphate and Hypoxia-Inducible Factor-1[Formula: see text].
    The American journal of Chinese medicine, 2016, Volume: 44, Issue:5

    Berberine exerts neuroprotective and modulates hypoxia inducible factor-1-alpha (HIF-1[Formula: see text]. Based on the role of HIF-1[Formula: see text] in hypoxia preconditioning and association between HIF-1[Formula: see text] and sphingosine-1-phosphate (S1P), we hypothesized that berberine preconditioning (BP) would ameliorate the cerebral injury induced by ischemia through activating the system of HIF-1[Formula: see text] and S1P. Adult male rats with middle cerebral artery occlusion (MCAO) and rat primary cortical neurons treated with oxygen and glucose deprivation (OGD) with BP at 24[Formula: see text]h (40[Formula: see text]mg/kg) and 2[Formula: see text]h (10[Formula: see text][Formula: see text]mol/L), respectively, were used to determine the neuroprotective effects. The HIF-1[Formula: see text] accumulation, and S1P metabolism were assayed in the berberine-preconditioned neurons, and the HIF-1[Formula: see text]-mediated transcriptional modulation of sphingosine kinases (Sphk) 1 and 2 was analyzed using chromatin immunoprecipitation and real-time polymerase chain reaction. BP significantly prevented cerebral ischemic injury in the MCAO rats at 24[Formula: see text]h and 72[Formula: see text]h following ischemia/reperfusion. In OGD-treated neurons, BP enhanced HIF-1[Formula: see text] accumulation with activation of PI3K/Akt, and induced S1P production by activating Sphk2 via the promotion of HIF-1[Formula: see text]-mediated Sphk2 transcription. In conclusion, BP activated endogenous neuroprotective mechanisms associated with the S1P/HIF-1 pathway and helped protect neuronal cells against hypoxia/ischemia.

    Topics: Animals; Berberine; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Ischemia; Lysophospholipids; Male; Neurons; Neuroprotective Agents; Phosphotransferases (Alcohol Group Acceptor); Rats; Rats, Sprague-Dawley; Sphingosine

2016
Pharmacologic recruitment of regulatory T cells as a therapy for ischemic acute kidney injury.
    Kidney international, 2012, Volume: 81, Issue:10

    Regulatory T cells (Tregs) are key components of the peripheral tolerance system and have become an immunotherapeutic agent for treating inflammatory processes. This therapeutic option, however, is hampered by problems arising from isolating and expanding desirable Tregs. Here we used an alternative approach with a pharmacologic agent to stimulate Tregs to achieve immunosuppressive effects. Pretreatment of mice with the naturally occurring sphingosine N,N-dimethylsphingosine (DMS) was found to increase both tissue-infiltrating T effectors (Teffs, CD4(+)Foxp3(-)) and Tregs (CD4(+)Foxp3(+)) in the early phase of bilateral renal ischemia/reperfusion injury. DMS itself had no effects on renal function or histopathology, but rapidly and transiently increased both Teffs and Tregs and increased the expression of chemokines CXCL9, CCL5, and CXCL10 in non-ischemic kidneys (sham operation). This renoprotection was abolished by administration of the Treg suppressing agents, anti-CTLA-4 or anti-CD25 monoclonal antibodies, suggesting that Tregs play a key role in DMS-induced renoprotection. Thus, Tregs recruited to the kidney by DMS ameliorate acute kidney injury and provide a new approach to control inflammatory diseases.

    Topics: Acute Kidney Injury; Animals; Antibodies, Monoclonal; Chemokine CCL5; Chemokine CXCL10; Chemokine CXCL9; Chemotaxis, Leukocyte; CTLA-4 Antigen; Cytoprotection; Disease Models, Animal; Enzyme Inhibitors; Forkhead Transcription Factors; Immunologic Factors; Interleukin-2 Receptor alpha Subunit; Ischemia; Kidney; Male; Mice; Phosphotransferases (Alcohol Group Acceptor); Reperfusion Injury; Sphingosine; T-Lymphocytes, Regulatory; Time Factors; Tumor Necrosis Factor-alpha

2012
The lysophospholipid mediator sphingosine-1-phosphate promotes angiogenesis in vivo in ischaemic hindlimbs of mice.
    Cardiovascular research, 2008, May-01, Volume: 78, Issue:2

    The lysophospholipid mediator sphingosine-1-phosphate (S1P) acts on vascular endothelial cells to stimulate migration, proliferation, and capillary-like tube formation in vitro. It is unknown whether S1P stimulates in vivo angiogenesis induced under tissue ischaemia. We investigated the effects of both exogenously and endogenously overproduced S1P on post-ischaemic angiogenesis in murine hindlimbs.. The effects of locally injected S1P on blood flow recovery, angiogenesis, and vascular permeability in mouse ischaemic hindlimbs that underwent femoral arteriectomy were assessed by a laser Doppler blood flow (LDBF) analysis, anti-CD31 immunohistochemistry, and Miles assay, respectively, and compared with those induced by fibroblast growth factor (FGF)-2. Blood flow recovery and angiogenesis in sphingosine kinase 1-transgenic mice that overproduce S1P endogenously were also assessed and compared with wild-type mice. The LDBF analysis showed that daily intramuscular administration of S1P dose-dependently stimulated blood flow recovery, resulting in up to twice as much blood flow when compared with vehicle control, which was accompanied by 1.7-fold increase in the capillary density. The optimal S1P effects were comparable with those obtained with FGF-2. S1P injection did not increase vascular permeability. The post-ischaemic blood flow recovery and angiogenesis were accelerated in sphingosine kinase 1-transgenic mice, which showed 40-fold higher sphingosine kinase activity and 1.8-fold higher S1P content in skeletal muscle than in wild-type (WT) mice, without an increase in the vascular permeability when compared with WT mice.. These results indicate that either local exogenous S1P administration or endogenous S1P overproduction promotes post-ischaemic angiogenesis and blood flow recovery. These observations suggest potential therapeutic usefulness of S1P for tissue ischaemia.

    Topics: Angiogenesis Inducing Agents; Animals; Blood Flow Velocity; Capillaries; Capillary Permeability; Disease Models, Animal; Fibroblast Growth Factor 2; Hindlimb; Immunohistochemistry; Ischemia; Laser-Doppler Flowmetry; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Muscle, Skeletal; Neovascularization, Physiologic; Phosphotransferases (Alcohol Group Acceptor); Platelet Endothelial Cell Adhesion Molecule-1; Regional Blood Flow; Sphingosine; Time Factors

2008
A novel adenoviral gutless vector encoding sphingosine kinase promotes arteriogenesis and improves perfusion in a rabbit hindlimb ischemia model.
    Coronary artery disease, 2005, Volume: 16, Issue:7

    We previously demonstrated that sphingosine kinase (SPK) increases the level of extracellular sphingosine-1-phosphate and promotes neovascularization in a mouse matrigel model. In this study, we tested the hypothesis that SPK gene transfer using a novel adenoviral 'gutless' vector (AGV) can enhance arteriogenesis in a rabbit hindlimb ischemia model.. Thirty-five male New Zealand white rabbits were randomized to the AGV-SPK group (n=13), AGV-null group (n=13), and control group (n=9). On day 10, after the induction of unilateral hindlimb ischemia, gene vectors or buffer were introduced and the effect examined on day 30, using calf blood pressure, quantitative angiographic analysis, and histology.. Calf systolic blood pressure ratios of the ischemic limb to the normal limb on day 30 were 0.77+/-0.13 in control groups, including the AGV-null group, and 0.91+/-0.14 in the AGV-SPK group (P<0.05). Angiographic vessel counts were significantly increased (8.0+/-2.1 at baseline and 11.8+/-3.2 on day 30, P<0.001) in the AGV-SPK group. Histologic analysis showed that microscopic total vessel counts on day 30 were 3.5+/-1.8/field in the control and AGV-null group and 5.4+/-1.0/field in the AGV-SPK group. Arterioles (AGV-SPK; 3.0+/-0.8 versus control and AGV-null; 2.1+/-1.1, P<0.05) were significantly increased in the AGV-SPK group.. This study shows that SPK promotes arteriogenesis, as evidenced by the maximal improvement in the blood pressure restoration and collateral vessel counts. SPK may be an important angiogenic target to improve perfusion in ischemic tissues.

    Topics: Adenoviridae; Angiogenesis Inducing Agents; Angiography; Animals; Femoral Artery; Gene Transfer Techniques; Genetic Therapy; Genetic Vectors; Hindlimb; Ischemia; Male; Models, Animal; Neovascularization, Physiologic; Phosphotransferases (Alcohol Group Acceptor); Rabbits; Regional Blood Flow

2005