sphingosine-kinase has been researched along with Infarction--Middle-Cerebral-Artery* in 11 studies
2 review(s) available for sphingosine-kinase and Infarction--Middle-Cerebral-Artery
Article | Year |
---|---|
Sphingosine 1-Phosphate Receptors in Cerebral Ischemia.
Sphingosine 1-phosphate (S1P) is an important lipid biomolecule that exerts pleiotropic cellular actions as it binds to and activates its five G-protein-coupled receptors, S1P Topics: Animals; Brain Damage, Chronic; Brain Ischemia; Clinical Trials as Topic; Disease Models, Animal; Drug Evaluation, Preclinical; Fingolimod Hydrochloride; Humans; Infarction, Middle Cerebral Artery; Inflammation; Ischemic Stroke; Lysophospholipids; Neovascularization, Physiologic; Nerve Tissue Proteins; Neuroprotective Agents; Phosphotransferases (Alcohol Group Acceptor); Rats; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors | 2021 |
Preclinical and Clinical Evidence for the Involvement of Sphingosine 1-Phosphate Signaling in the Pathophysiology of Vascular Cognitive Impairment.
Sphingosine 1-phosphates (S1Ps) are bioactive lipids that mediate a diverse range of effects through the activation of cognate receptors, S1P Topics: Aldehyde-Lyases; Alzheimer Disease; Animals; Cerebrovascular Disorders; Clinical Trials as Topic; Dementia, Vascular; Drug Delivery Systems; Drug Evaluation, Preclinical; Fingolimod Hydrochloride; Humans; Infarction, Middle Cerebral Artery; Inflammation; Ischemic Stroke; Lysophospholipids; Mice; Mice, Knockout; Neurodegenerative Diseases; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors | 2021 |
9 other study(ies) available for sphingosine-kinase and Infarction--Middle-Cerebral-Artery
Article | Year |
---|---|
Dihydromyricetin Attenuates Cerebral Ischemia Reperfusion Injury by Inhibiting SPHK1/mTOR Signaling and Targeting Ferroptosis.
Dihydromyricetin (DHM) exerts protective effects in various brain diseases. The aim of this research was to investigate the biological role of DHM in cerebral ischemia reperfusion (I/R) injury.. We generated a rat model of cerebral I/R injury by performing middle cerebral artery occlusion/reperfusion (MCAO/R). The neurological score and brain water content of the experimental rats was then evaluated. The infarct volume and extent of apoptosis in brain tissues was then assessed by 2,3,5-triphenyltetrazolium (TTC) and TdT-mediated dUTP nick end labeling (TUNEL) staining. Hippocampal neuronal cells (HT22) were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) and cell counting kit-8 (CCK-8) assays and flow cytometry were performed to detect cell viability and apoptosis. The levels of lipid reactive oxygen species (ROS) and iron were detected and the expression levels of key proteins were assessed by Western blotting.. DHM obviously reduced neurological deficits, brain water content, infarct volume and cell apoptosis in the brain tissues of MCAO/R rats. DHM repressed ferroptosis and inhibited the sphingosine kinase 1 (SPHK1)/mammalian target of rapamycin (mTOR) pathway in MCAO/R rats. In addition, DHM promoted cell viability and repressed apoptosis in OGD/R-treated HT22 cells. DHM also suppressed the levels of lipid ROS and intracellular iron in OGD/R-treated HT22 cells. The expression levels of glutathione peroxidase 4 (GPX4) was enhanced while the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4) and phosphatidylethanolamine binding protein 1 (PEBP1) were reduced in OGD/R-treated HT22 cells in the presence of DHM. Moreover, the influence conferred by DHM was abrogated by the overexpression of SPHK1 or treatment with MHY1485 (an activator of mTOR).. This research demonstrated that DHM repressed ferroptosis by inhibiting the SPHK1/mTOR signaling pathway, thereby alleviating cerebral I/R injury. Our findings suggest that DHM may be a candidate drug for cerebral I/R injury treatment. Topics: Animals; Coenzyme A; Ferroptosis; Flavonols; Glucose; Infarction, Middle Cerebral Artery; Iron; Ligases; Lipids; Mammals; Oxygen; Phosphatidylethanolamine Binding Protein; Phospholipid Hydroperoxide Glutathione Peroxidase; Phosphotransferases (Alcohol Group Acceptor); Rats; Reactive Oxygen Species; Reperfusion Injury; Signal Transduction; TOR Serine-Threonine Kinases; Water | 2022 |
Up-regulation of sphingosine-1-phosphate receptors and sphingosine kinase 1 in the peri-ischemic area after transient middle cerebral artery occlusion in mice.
There is thought to be a strong relationship between sphingosine-1-phosphate (S1P) signaling and pathophysiolosy of cerebral ischemia. We examined the change of expression and distribution of S1P receptors (S1PRs) and sphingosine kinases (SphKs) after cerebral ischemia in male C57BL6/J mice using immunohistochemical analysis at 1, 5, 14, and 28 days after 30 min of transient middle cerebral artery occlusion (tMCAO). S1PR1, 3, and 5 were transiently induced in the cells, which were morphologically similar to neurons in the peri-infarct lesion with a peak seen at 1 day after tMCAO (p < 0.01 vs. sham control). S1PR2 appeared in the inner layer of vessels in the ischemic core (p < 0.01 vs. sham control) and the peri-infarct lesion (p < 0.01 vs. sham control) at the acute phase after tMCAO. However, SphK1 was strongly induced at 1 and 5 days after tMCAO (p < 0.01 vs. sham control) in the peri-infarct lesion, whereas SphK2 expression did not change. Western blot analysis at 1 and 5 days after 30 min of tMCAO revealed that the expression of S1PRs were transiently enhanced at the acute phase, which was consistent with the immunohistochemical results. Double immunofluorescent analysis revealed S1PR2/NG2- and S1PR2/CD31-, S1PR3/CD31-, and S1PR5/CD31-double positive cells in the peri-infarct lesion 1 day after tMCAO. The present results suggest that S1PRs and SphK1 may be important therapeutic targets for rescuing the peri-infarct lesion. Topics: Animals; Brain Ischemia; Disease Models, Animal; Infarction, Middle Cerebral Artery; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Neurons; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Transcriptional Activation | 2020 |
Sphk1 mediates neuroinflammation and neuronal injury via TRAF2/NF-κB pathways in activated microglia in cerebral ischemia reperfusion.
Sphingosine kinase 1 (Sphk1), a key enzyme responsible for phosphorylating sphingosine into sphingosine1-phosphate (S1P), plays an important role in mediating post-stroke neuroinflammation. However, the pathway and mechanism of the Sphk1-mediated inflammatory response remains unknown. In this study, we found that suppression of Sphk1 decreased IL17 production and relieved neuronal damage induced by microglia in cerebral ischemia reperfusion (IR) or in an in vitro oxygen-glucose deprivation reperfusion (OGDR) system. Inhibition of Sphk1 with an inhibitor or siRNA decreased tumor necrosis factor receptor-associated factor 2 (TRAF2) and nuclear factor-kappa B (NF-κB) sequentially in microglia in response to IR or OGDR. Moreover, we also found that after suppression of TRAF2 or NF-κB by siRNA in microglia, reductions in the downstream molecules NF-κB and IL-17 and in neuronal apoptosis were observed in response to OGDR. Taken together, we hypothesize that Sphk1, TRAF2 and NF-κB form an axis that leads to increased IL-17 and neuronal apoptosis. This axis may be a potential therapeutic target to control neuroinflammation in brain IR. Topics: Animals; Animals, Newborn; Cells, Cultured; Disease Models, Animal; Encephalitis; Glucose; Hypoxia; Infarction, Middle Cerebral Artery; Interleukin-17; Male; Methanol; Microglia; NF-kappa B; Phosphotransferases (Alcohol Group Acceptor); Pyrrolidines; Rats; Rats, Sprague-Dawley; Reperfusion; Signal Transduction; Sulfones; TNF Receptor-Associated Factor 2 | 2017 |
Sphingosine kinase 1/sphingosine-1-phosphate regulates the expression of interleukin-17A in activated microglia in cerebral ischemia/reperfusion.
Microglial activation is one of the causative factors of neuroinflammation in cerebral ischemia/reperfusion (IR). Sphingosine kinase 1 (Sphk1), a key enzyme responsible for phosphorylating sphingosine into sphingosine-1-phosphate (S1P), plays an important role in the regulation of proinflammatory cytokines in activated microglia. Recent research demonstrated that S1P increased IL-17A-secretion and then worsened CNS (central nervous system) inflammation. Thus, in the present study, we sought to use microglial cells as the object of study to discuss the molecular mechanisms in Sphk1/S1P-regulated IL-17A-secretion in IR.. We used immunofluorescence and confocal microscopy to detect whether Sphk1 is expressed in microglia after cerebral IR or oxygen-glucose deprivation (OGDR). Western blot analysis was used to estimate the total Sphk1 protein level at different time points after OGDR. To detect cytokine secretion in microglial supernatants in response to OGDR, we measured the concentration of IL-17A in the culture supernatants using an enzyme-linked immunosorbent assay (ELISA). To evaluate whether microglia subjected to OGDR exhibited neuronal injury, we used a commercially available terminal transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) kit to detect apoptotic neurons.. Sphk1 was expressed in microglia in response to cerebral IR or OGDR at appointed time. Pre-injection with PF-543, an inhibitor of Sphk1, before IR clearly reduced the expression of Sphk1 in microglia relative to brain IR alone. The number of TUNEL-positive neurons was also decreased in the PF-543-pretreated animals before IR compared to the animals with IR alone. When S1P was administered in OGDR microglia, IL-17A expression and neuronal apoptosis were increased compared to OGDR alone and the administration of S1P alone. ELISA further confirmed the above results. Moreover, the inhibition of Sphk1 by siRNA reduced IL-17A production and relieved neuronal apoptosis in OGDR microglia.. These results indicated that Sphk1/S1P regulates the expression of IL-17A in activated microglia, inducing neuronal apoptosis in cerebral ischemia/reperfusion. The microglial Sphk1/S1P pathway may thus be a potential therapeutic target to control neuroinflammation in brain IR. Topics: Animals; Apoptosis; Brain; Brain Ischemia; Cells, Cultured; Glucose; Hypoxia, Brain; Infarction, Middle Cerebral Artery; Interleukin-17; Lysophospholipids; Male; Methanol; Microglia; Neurons; Phosphotransferases (Alcohol Group Acceptor); Pyrrolidines; Rats, Sprague-Dawley; Reperfusion Injury; RNA, Small Interfering; Sphingosine; Sulfones | 2016 |
Sphingosine kinase 1 mediates neuroinflammation following cerebral ischemia.
Sphingosine kinases (Sphks) are the rate-limiting kinases in the generation of sphingosine-1-phosphate, which is a well-established intracellular pro-survival lipid mediator. Sphk2 has been reported to be protective following experimental stroke. We investigated the role of Sphk1 in cerebral ischemia using a mouse middle cerebral artery occlusion (MCAO) model and an in vitro glucose-oxygen deprivation (OGD) model. Sphk expression and activity were assessed in the ischemic brain with quantitative PCR (qPCR), Western blot, immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). Pharmacological and gene knockdown approaches were utilized to investigate the effects of Sphk1 on stroke outcomes. The expression of Sphk1 but not that of Sphk2 was rapidly induced in the cortical penumbra over 96h after MCAO, and the microglia were one of the major cellular sources of Sphk1 induction. Consistently, Sphk activity was enhanced in the cortical penumbra. In contrast to the protective role of Sphk2, pharmacological inhibition and cortical knockdown of Sphk1 reduced infarction at 24 and 96h after reperfusion. Additionally, the Sphk1 inhibitor improved the neurological deficits at 96h after reperfusion. Mechanistically, Sphk1 inhibition and knockdown significantly attenuated MCAO-induced expression of inflammatory mediators in the cortical penumbra. Moreover, using a conditioned medium transfer approach, we demonstrated that OGD-treated neurons induced the expression of Sphk1 and pro-inflammatory mediators in primary microglia, and the microglial induction of pro-inflammatory mediators by ischemic neurons was blunted by Sphk1 inhibition. Taken together, our results indicate that Sphk1 plays an essential role in mediating post-stroke neuroinflammation. Topics: Animals; Animals, Newborn; Brain; Brain Infarction; Calcium-Binding Proteins; Cell Hypoxia; Cytokines; Disease Models, Animal; Encephalitis; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Glucose; Infarction, Middle Cerebral Artery; Male; Mice; Microfilament Proteins; Microglia; Neurons; Nitric Oxide Synthase Type II; Phosphopyruvate Hydratase; Phosphotransferases (Alcohol Group Acceptor); Time Factors | 2015 |
Role of the sphingosine metabolism pathway on neurons against experimental cerebral ischemia in rats.
Although there is evidence that sphingosine-1-phosphate receptor-1 (S1P1) activation occurs following experimental brain injury, there is little information about its metabolic pathway in cerebral ischemia. The purpose of this study was to evaluate the role of the sphingosine metabolic pathway including S1P1, sphingosine kinases 1 (SphK1), and 2 (SphK2) in transient middle cerebral artery occlusion (MCAO). Fifty-eight male Sprague-Dawley rats were used to asses temporal profiles of S1P1, SphK1 and 2 on neurons in infarct and periinfarct cortices at pre-infarct state, 6, and 24 hours after MCAO. The animals were then treated with vehicle and 0.25 mg/kg FTY720, which is an agonist of S1P receptors, and evaluated regarding neurological function, infarct volume, and S1P1 expression on neurons at 24 hours after MCAO. The expressions of S1P1, SphK1, and SphK2 were significantly decreased after MCAO. Labeling of all markers were reduced in the infarct cortex but remained present in the periinfarct cortex, and some were found to be on neurons. Significant improvements of neurological function and brain injury were observed in the FTY720 group compared with the vehicle and untreated groups, although S1P1 expression on neurons was reduced in the FTY720 group compared with the vehicle group. We demonstrated that S1P1, SphK1, and SphK2 were downregulated in the infarct cortex, whereas they were preserved in the periinfarct cortex where FTY720 reduced neuronal injury possibly via S1P1 activation. Our findings suggest that activation of the sphingosine metabolic pathway may be neuroprotective in cerebral ischemia. Topics: Animals; Brain Ischemia; Disease Models, Animal; Fingolimod Hydrochloride; Immunosuppressive Agents; Infarction, Middle Cerebral Artery; Male; Neurons; Phosphotransferases (Alcohol Group Acceptor); Propylene Glycols; Rats; Rats, Sprague-Dawley; Sphingosine | 2013 |
Activation of sphingosine kinase 2 is an endogenous protective mechanism in cerebral ischemia.
The two ubiquitously expressed sphingosine kinases (SphK) 1 and 2 are key regulators of the sphingolipid signaling pathway. Despite the formation of an identical messenger, i.e. sphingosine 1-phosphate (S1P), they exert strikingly different functions. Particularly, SphK2 is necessary for the phosphorylation of the sphingosine analog fingolimod (FTY720), which is protective in rodent stroke models. Using gene deficient mice lacking either SphK1 or SphK2, we investigated the role of the two lipid kinases in experimental stroke. We performed 2h transient middle cerebral artery occlusion (tMCAO) and analyzed lesion size and neurological function after 24h. Treatment groups received 1mg/kg FTY720. Neutrophil infiltration, microglia activation, mRNA and protein expression of SphK1, SphK2 and the S1P(1) receptor after tMCAO were studied. Genetic deletion of SphK2 but not SphK1 increased ischemic lesion size and worsened neurological function after tMCAO. The protective effect of FTY720 was conserved in SphK1(-/-) mice but not in SphK2(-/-) mice. This suggests that SphK2 activity is an important endogenous protective mechanism in cerebral ischemia and corroborates that the protective effect of FTY720 is mediated via phospho-FTY720. Topics: Animals; Brain Ischemia; Enzyme Activation; Fingolimod Hydrochloride; Gene Deletion; Infarction, Middle Cerebral Artery; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Phosphotransferases (Alcohol Group Acceptor); Propylene Glycols; Sphingosine | 2011 |
Hypoxic preconditioning-induced cerebral ischemic tolerance: role of microvascular sphingosine kinase 2.
The importance of bioactive lipid signaling under physiological and pathophysiological conditions is progressively becoming recognized. The disparate distribution of sphingosine kinase (SphK) isoform activity in normal and ischemic brain, particularly the large excess of SphK2 in cerebral microvascular endothelial cells, suggests potentially unique cell- and region-specific signaling by its product sphingosine-1-phosphate. The present study sought to test the isoform-specific role of SphK as a trigger of hypoxic preconditioning (HPC)-induced ischemic tolerance.. Temporal changes in microvascular SphK activity and expression were measured after HPC. The SphK inhibitor dimethylsphingosine or sphingosine analog FTY720 was administered to adult male Swiss-Webster ND4 mice before HPC. Two days later, mice underwent a 60-minute transient middle cerebral artery occlusion and at 24 hours of reperfusion, infarct volume, neurological deficit, and hemispheric edema were measured.. HPC rapidly increased microvascular SphK2 protein expression (1.7+/-0.2-fold) and activity (2.5+/-0.6-fold), peaking at 2 hours, whereas SphK1 was unchanged. SphK inhibition during HPC abrogated reductions in infarct volume, neurological deficit, and ipsilateral edema in HPC-treated mice. FTY720 given 48 hours before stroke also promoted ischemic tolerance; when combined with HPC, even greater (and dimethylsphingosine-reversible) protection was noted.. These findings indicate hypoxia-sensitive increases in SphK2 activity may serve as a proximal trigger that ultimately leads to sphingosine-1-phosphate-mediated alterations in gene expression that promote the ischemia-tolerant phenotype. Thus, components of this bioactive lipid signaling pathway may be suitable therapeutic targets for protecting the neurovascular unit in stroke. Topics: Animals; Arterioles; Brain Edema; Cerebral Arteries; Cerebrovascular Circulation; Disease Models, Animal; Fingolimod Hydrochloride; Hypoxia-Ischemia, Brain; Immunosuppressive Agents; Infarction, Middle Cerebral Artery; Ischemic Preconditioning; Lysophospholipids; Male; Mice; Microcirculation; Phosphotransferases (Alcohol Group Acceptor); Propylene Glycols; Reperfusion Injury; RNA, Messenger; Sphingosine | 2009 |
Distribution of sphingosine kinase activity and mRNA in rodent brain.
Sphingosine-1-phosphate (S1P) is a lipid mediator that exerts multiple cellular functions through activation of a subfamily of G-protein-coupled receptors. Although there is evidence that S1P plays a role in the developing and adult CNS, little is known about the ability of brain parenchyma to synthesize this lipid. We have therefore analyzed the brain distribution of the enzymatic activity of the S1P synthesizing enzyme, sphingosine kinase (SPHK) [EC:2.7.1.91], as well as mRNA distribution for one of the two isoforms of this enzyme, sphingosine kinase 2. SPHK activity, measured by the conversion of [(3)H]sphingosine to [(3)H]S1P, is highest in cerebellum, followed by cortex and brainstem. Lowest activities were found in striatum and hippocampus. Sensitivity to 0.1% Triton-X suggests that this activity is accounted for by SPHK2. RT-PCR and in situ hybridization studies show that mRNA for this isoform has a distribution similar to that of SPHK activity. In vivo and in vitro ischemia increase SPHK activity and SPHK2 mRNA levels. These results indicate that SPHK2 is the predominant S1P-synthesizing isoform in normal brain parenchyma. Its heterogeneous distribution, in particular laminar distribution in cortex, suggests a neuronal localization and a possible role in cortical and cerebellar functions, in normal as well as ischemic brain. Topics: Animals; Blotting, Northern; Blotting, Western; Brain; Brain Chemistry; Cells, Cultured; Female; Glucose; Hypoxia, Brain; In Situ Hybridization; Infarction, Middle Cerebral Artery; Lysophospholipids; Male; Mice; Mice, Inbred ICR; Neuroglia; Neurons; Phosphotransferases (Alcohol Group Acceptor); Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sphingosine | 2007 |