sphingosine-kinase and Hypersensitivity

sphingosine-kinase has been researched along with Hypersensitivity* in 4 studies

Reviews

4 review(s) available for sphingosine-kinase and Hypersensitivity

ArticleYear
Sphingosine kinase inhibitors: A patent review.
    International journal of molecular medicine, 2018, Volume: 41, Issue:5

    Sphingosine kinases (SphKs) catalyze the conversion of the sphingosine to the promitogenic/migratory product, sphingosine-1-phosphate (S1P). SphK/S1P pathway has been linked to the progression of cancer and various other diseases including allergic inflammatory disease, cardiovascular diseases, rejection after transplantation, the central nervous system, and virus infections. Therefore, SphKs represent potential new targets for developing novel therapeutics for these diseases. The history and development of SphK inhibitors are discussed, summarizing SphK inhibitors by their structures, and describing some applications of SphK inhibitors. We concluded: i) initial SphK inhibitors based on sphingosine have low specificity with several important off-targets. Identification the off-targets that would work synergistically with SphKs, and developing compounds that target the unique C4 domain of SphKs should be the focus of future studies. ii) The modifications of SphK inhibitors, which are devoted to increasing the selectivity to one of the two isoforms, now focus on the alkyl length, the spacer between the head and linker rings, and the insertion and the position of lipidic group in tail region. iii) SphK/S1P signaling pathway holds therapeutic values for many diseases. To find the exact function of each isoform of SphKs increasing the number of SphK inhibitor clinical trials is necessary.

    Topics: Animals; Cardiovascular Diseases; Drug Discovery; Humans; Hypersensitivity; Lysophospholipids; Molecular Targeted Therapy; Neoplasms; Patents as Topic; Phosphotransferases (Alcohol Group Acceptor); Protein Kinase Inhibitors; Signal Transduction; Sphingosine

2018
"Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets.
    Pharmacological reviews, 2008, Volume: 60, Issue:2

    Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes including proliferation, survival, and migration, as well as angiogenesis and allergic responses. S1P levels inside cells are tightly regulated by the balance between its synthesis by sphingosine kinases and degradation. S1P is interconvertible with ceramide, which is a critical mediator of apoptosis. It has been postulated that the ratio between S1P and ceramide determines cell fate. Activation of sphingosine kinase by a variety of agonists increases intracellular S1P, which in turn can function intracellularly as a second messenger or be secreted out of the cell and act extracellularly by binding to and signaling through S1P receptors in autocrine and/or paracrine manners. Recent studies suggest that this "inside-out" signaling by S1P may play a role in many human diseases, including cancer, atherosclerosis, inflammation, and autoimmune disorders such as multiple sclerosis. In this review we summarize metabolism of S1P, mechanisms of sphingosine kinase activation, and S1P receptors and their downstream signaling pathways and examine relationships to multiple disease processes. In particular, we describe recent preclinical and clinical trials of therapies targeting S1P signaling, including 2-amino-2-propane-1,3-diol hydrochloride (FTY720, fingolimod), S1P receptor agonists, sphingosine kinase inhibitors, and anti-S1P monoclonal antibody.

    Topics: Animals; Antibodies, Monoclonal; Antineoplastic Agents; Apoptosis; Enzyme Activation; Fingolimod Hydrochloride; Humans; Hypersensitivity; Immunosuppressive Agents; Lysophospholipids; Multiple Sclerosis; Neoplasms; Phosphotransferases (Alcohol Group Acceptor); Propylene Glycols; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Sulfhydryl Compounds

2008
Allergy therapy: the therapeutic potential of targeting sphingosine kinase signalling in mast cells.
    European journal of immunology, 2008, Volume: 38, Issue:11

    Mast cell activation is a central event in allergic diseases, and investigating the signalling pathways triggered during mast cell activation may lead to the discovery of novel therapeutic targets. Mast cells can be activated by a multitude of stimuli including antibodies/antigen, cytokines/chemokines and neuropeptides, resulting in a variety of responses including the immediate release of potent inflammatory mediators. Moreover, recent data suggest that mast cell-mediated responses are also influenced by the differential sphingolipids/sphingosine to sphingosine-1-phosphate ratio. The importance of sphingolipids as potent biological mediators of both intracellular and extracellular responses is being increasingly recognized and accepted; it is now appreciated that activation of mast cells, via the high-affinity IgE-receptor (FcepsilonRI) leads to the activation of sphingosine kinases (SphK), resulting in increased formation of sphingosine-1-phosphate. Furthermore, FcepsilonRI activates SphK-dependent calcium mobilization in mast cells, leading to degranulation, cytokine, and eicosanoid production, and chemotaxis. In the past two years a critical role for SphK in allergic responses in vivo has emerged. In this review, I focus on the current understanding of the role of sphingosine kinases during mast cell signalling in vitro and their role during hypersensitivity responses in vivo, and discuss the potential of these enzymes as novel therapeutic targets to treat allergic diseases.

    Topics: Anaphylaxis; Asthma; Enzyme Inhibitors; Humans; Hypersensitivity; Mast Cells; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction

2008
Sphingosine kinase signalling in immune cells: potential as novel therapeutic targets.
    Biochimica et biophysica acta, 2008, Volume: 1784, Issue:1

    During the last few years, it has become clear that sphingolipids are sources of important signalling molecules. Particularly, the sphingolipid metabolites, ceramide and S1P, have emerged as a new class of potent bioactive molecules, implicated in a variety of cellular processes such as cell differentiation, apoptosis, and proliferation. Sphingomyelin (SM) is the major membrane sphingolipid and is the precursor for the bioactive products. Ceramide is formed from SM by the action of sphingomyelinases (SMase), however, ceramide can be very rapidly hydrolysed, by ceramidases to yield sphingosine, and sphingosine can be phosphorylated by sphingosine kinase (SphK) to yield S1P. In immune cells, the sphingolipid metabolism is tightly related to the main stages of immune cell development, differentiation, activation, and proliferation, transduced into physiological responses such as survival, calcium mobilization, cytoskeletal reorganization and chemotaxis. Several biological effectors have been shown to promote the synthesis of S1P, including growth factors, cytokines, and antigen and G-protein-coupled receptor agonists. Interest in S1P focused recently on two distinct cellular actions of this lipid, namely its function as an intracellular second messenger, capable of triggering calcium release from internal stores, and as an extracellular ligand activating specific G protein-coupled receptors. Inhibition of SphK stimulation strongly reduced or even prevented cellular events triggered by several proinflammatory agonists, such as receptor-stimulated DNA synthesis, Ca(2+) mobilization, degranulation, chemotaxis and cytokine production. Another very important observation is the direct role played by S1P in chemotaxis, and cellular escape from apoptosis. As an extracellular mediator, several studies have now shown that S1P binds a number of G-protein-coupled receptors (GPCR) encoded by endothelial differentiation genes (EDG), collectively known as the S1P-receptors. Binding of S1P to these receptors trigger an wide range of cellular responses including proliferation, enhanced extracellular matrix assembly, stimulation of adherent junctions, formation of actin stress fibres, and inhibition of apoptosis induced by either ceramide or growth factor withdrawal. Moreover, blocking S1P1-receptor inhibits lymphocyte egress from lymphatic organs. This review summarises the evidence linking SphK signalling pathway to immune-cell activation and based on these data discuss the

    Topics: Animals; Autoimmune Diseases; Calcium Signaling; Cell Adhesion Molecules; Ceramides; Humans; Hypersensitivity; Immune System; Inflammation; Lymphocytes; Lysophospholipids; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Sphingomyelin Phosphodiesterase; Sphingomyelins; Sphingosine

2008