sphingosine-kinase has been researched along with Hyperplasia* in 4 studies
4 other study(ies) available for sphingosine-kinase and Hyperplasia
Article | Year |
---|---|
A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma.
Sphingosine-1-phosphate (S1P), which is produced by 2 sphingosine kinase (SphK) isoenzymes, SphK1 and SphK2, has been implicated in IgE-mediated mast cell responses. However, studies of allergic inflammation in isotype-specific SphK knockout mice have not clarified their contribution, and the role that S1P plays in vivo in a mast cell- and IgE-dependent murine model of allergic asthma has not yet been examined.. We used an isoenzyme-specific SphK1 inhibitor, SK1-I, to investigate the contributions of S1P and SphK1 to mast cell-dependent airway hyperresponsiveness (AHR) and airway inflammation in mice.. Allergic airway inflammation and AHR were examined in a mast cell-dependent murine model of ovalbumin (OVA)-induced asthma. C57BL/6 mice received intranasal delivery of SK1-I before sensitization and challenge with OVA or only before challenge.. SK1-I inhibited antigen-dependent activation of human and murine mast cells and suppressed activation of nuclear factor κB (NF-κB), a master transcription factor that regulates the expression of proinflammatory cytokines. SK1-I treatment of mice sensitized to OVA in the absence of adjuvant, in which mast cell-dependent allergic inflammation develops, significantly reduced OVA-induced AHR to methacholine; decreased numbers of eosinophils and levels of the cytokines IL-4, IL-5, IL-6, IL-13, IFN-γ, and TNF-α and the chemokines eotaxin and CCL2 in bronchoalveolar lavage fluid; and decreased pulmonary inflammation, as well as activation of NF-κB in the lungs.. S1P and SphK1 play important roles in mast cell-dependent, OVA-induced allergic inflammation and AHR, in part by regulating the NF-κB pathway. Topics: Amino Alcohols; Animals; Asthma; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Cells, Cultured; Chemokine CCL2; Female; Goblet Cells; Humans; Hyperplasia; Immunoglobulin E; Inflammation; Interferon-gamma; Interleukins; Lung; Lysophospholipids; Mast Cells; Methacholine Chloride; Mice; Mice, Inbred C57BL; NF-kappa B; Ovalbumin; Phosphotransferases (Alcohol Group Acceptor); Sphingosine; Tumor Necrosis Factor-alpha | 2013 |
The sphingosine kinase inhibitor N,N-dimethylsphingosine inhibits neointimal hyperplasia.
Sphingosine-1-phosphate and its receptors may be involved in vascular smooth muscle cell (VSMC) proliferation following vascular injury. Here, we evaluate the effect of d-erythro-N,N-dimethylsphingosine (DMS), a sphingosine kinase (SK) inhibitor, on VSMC proliferation, apoptosis and neointimal formation.. Growth responses in vitro to fetal calf serum (FCS) were measured by [(3)H]-thymidine incorporation and extracellular signal-regulated kinase-1/2 (ERK-1/2) activation in quiescent primary cultures of porcine VSMC in the presence and absence of various concentrations of the SK inhibitor DMS. In vivo treatment with DMS was delivered with a local endoluminal catheter, following balloon injury of coronary arteries. The artery intimal formation was investigated by angiography, myography and histomorphometry.. In vitro experiments indicated that DMS induced a dose-dependent reduction in [(3)H]-thymidine incorporation and ERK-1/2 activation via a protein kinase C (PKC) independent mechanism with an IC(50) value of 12 +/- 6 and 15 +/- 10 microM respectively. DMS also reduced Akt signalling. Four weeks following in vivo delivery of DMS, complete functional endothelial regeneration was observed in all treatment groups, with significant reduction of intimal formation (vehicle 23.7 +/- 4.6% vs. DMS infusion 8.92 +/- 2.9%, P < 0.05).. Taken together, these results demonstrate that local administration of the SK inhibitor, DMS, reduced neointimal formation, and this effect could involve inhibition of ERK-1/2 and Akt signalling, and modulation of smooth muscle growth. Topics: Animals; Apoptosis; Catheterization; Cell Proliferation; Hyperplasia; Lysophospholipids; Male; Mitogen-Activated Protein Kinase 3; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Phosphotransferases (Alcohol Group Acceptor); Protein Kinase C; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Signal Transduction; Sphingosine; Sus scrofa; Tunica Intima | 2010 |
Inhalation of sphingosine kinase inhibitor attenuates airway inflammation in asthmatic mouse model.
Sphingosine 1-phosphate (S1P) produced by sphingosine kinase (SPHK) is implicated in acute immunoresponses, however, mechanisms of SPHK/S1P signaling in the pathogenesis of bronchial asthma are poorly understood. In this study, we hypothesized that SPHK inhibition could ameliorate lung inflammation in ovalbumin (OVA)-challenged mouse lungs. Six- to eight-week-old C57BL/6J mice were sensitized and exposed to OVA for 3 consecutive days. Twenty-four hours later, mice lungs and bronchoalveolar lavage (BAL) fluid were analyzed. For an inhibitory effect, either of the two different SPHK inhibitors, N,N-dimethylsphingosine (DMS) or SPHK inhibitor [SK-I; 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole], was nebulized for 30 min before OVA inhalation. OVA inhalation caused S1P release into BAL fluid and high expression of SPHK1 around bronchial epithelial walls and inflammatory areas. DMS or SK-I inhalation resulted in a decrease in S1P amounts in BAL fluid to basal levels, accompanied by decreased eosinophil infiltration and peroxidase activity. The extent of inhibition caused by DMS inhalation was higher than that caused by SK-I. Like T helper 2 (Th2) cytokine release, OVA inhalation-induced increase in eotaxin expression was significantly suppressed by DMS pretreatment both at protein level in BAL fluid and at mRNA level in lung homogenates. Moreover, bronchial hyperresponsiveness to inhaled methacholine and goblet cell hyperplasia were improved by SPHK inhibitors. These data suggest that the inhibition of SPHK affected acute eosinophilic inflammation induced in antigen-challenged mouse model and that targeting SPHK may provide a novel therapeutic tool to treat bronchial asthma. Topics: Administration, Inhalation; Aniline Compounds; Animals; Asthma; Bronchoalveolar Lavage Fluid; Cells, Cultured; Chemokines, CC; Disease Models, Animal; Enzyme Inhibitors; Goblet Cells; Humans; Hyperplasia; Interleukins; Lysophospholipids; Mice; Mice, Inbred C57BL; Ovalbumin; Phosphotransferases (Alcohol Group Acceptor); Respiratory Mucosa; Sphingosine; Thiazoles | 2008 |
K6PC-5, a direct activator of sphingosine kinase 1, promotes epidermal differentiation through intracellular Ca2+ signaling.
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, regulates multiple cellular responses such as Ca(2+) signaling, growth, survival, and differentiation. Because sphingosine kinase (SphK) is the enzyme directly responsible for production of S1P, many factors have been identified that regulate its activity and subsequent S1P levels. Here we synthesized a previously unidentified SphK activator, K6PC-5, and have studied its effects on intracellular Ca(2+) signaling in HaCaT cells and epidermal differentiation in murine skin. K6PC-5, a hydrophobic compound chemically named N-(1,3-dihydroxyisopropyl)-2-hexyl-3-oxo-decanamide, activated SphK (obtained from C57BL/6 murine blood and F9-12 cell lysates) in a dose-dependent manner. K6PC-5 induced both intracellular Ca(2+) concentration ([Ca(2+)](i)) oscillations in HaCaT cells and Ca(2+) mobilization in hairless mouse epidermis. Both dimethylsphingosine (DMS) and dihydroxysphingosine (DHS), SphK inhibitors, and transfection of SphK1-siRNA blocked K6PC-5-induced increases in [Ca(2+)](i). The K6PC-5-induced [Ca(2+)](i) oscillations were dependent on thapsigargin-sensitive Ca(2+) stores and Ca(2+) entry, but independent of the classical phospholipase C-mediated pathway. In addition, K6PC-5 enhanced the expression of involucrin and filaggrin, specific differentiation-associated marker proteins in HaCaT cells, whereas transfection of SphK1-siRNA blocked the increase of involucrin. Topical K6PC-5 also enhanced the expression of involucrin, loricrin, filaggrin, and keratin 5 in intact murine epidermis. Finally, topical K6PC-5 inhibited epidermal hyperplasia by exerting antiproliferative effects on keratinocytes in murine epidermis. These results suggest that K6PC-5 acts to regulate both differentiation and proliferation of keratinocytes via [Ca(2+)](i) responses through S1P production. Thus, regulation of S1P levels may represent a novel approach for treatment of skin disorders characterized by abnormal differentiation and proliferation, such as atopic dermatitis and psoriasis. Topics: Amides; Animals; Calcium; Calcium Signaling; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Proliferation; Enzyme Activators; Epidermis; Female; Filaggrin Proteins; Humans; Hyperplasia; Intermediate Filament Proteins; Keratin-5; Keratinocytes; Lysophospholipids; Membrane Proteins; Mice; Mice, Hairless; Mice, Inbred C57BL; Neoplasms, Germ Cell and Embryonal; Phosphotransferases (Alcohol Group Acceptor); Protein Precursors; Sphingosine; Teratocarcinoma | 2008 |