sphingosine-kinase has been researched along with Hemolysis* in 2 studies
2 other study(ies) available for sphingosine-kinase and Hemolysis
Article | Year |
---|---|
Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression.
Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates multicellular functions through interactions with its receptors on cell surfaces. S1P is enriched and stored in erythrocytes; however, it is not clear whether alterations in S1P are involved in the prevalent and debilitating hemolytic disorder sickle cell disease (SCD). Here, using metabolomic screening, we found that S1P is highly elevated in the blood of mice and humans with SCD. In murine models of SCD, we demonstrated that elevated erythrocyte sphingosine kinase 1 (SPHK1) underlies sickling and disease progression by increasing S1P levels in the blood. Additionally, we observed elevated SPHK1 activity in erythrocytes and increased S1P in blood collected from patients with SCD and demonstrated a direct impact of elevated SPHK1-mediated production of S1P on sickling that was independent of S1P receptor activation in isolated erythrocytes. Together, our findings provide insights into erythrocyte pathophysiology, revealing that a SPHK1-mediated elevation of S1P contributes to sickling and promotes disease progression, and highlight potential therapeutic opportunities for SCD. Topics: Anemia, Sickle Cell; Animals; Antisickling Agents; Disease Models, Animal; Disease Progression; Enzyme Inhibitors; Erythrocytes, Abnormal; Gene Knockdown Techniques; Hemolysis; Humans; Lysophospholipids; Metabolomics; Methanol; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Mice, Transgenic; Phosphotransferases (Alcohol Group Acceptor); Pyrrolidines; Signal Transduction; Sphingosine; Sulfones | 2014 |
Clostridium perfringens alpha-toxin activates the sphingomyelin metabolism system in sheep erythrocytes.
Clostridium perfringens alpha-toxin induces hemolysis of rabbit erythrocytes through the activation of glycerophospholipid metabolism. Sheep erythrocytes contain large amounts of sphingomyelin (SM) but not phosphatidylcholine. We investigated the relationship between the toxin-induced hemolysis and SM metabolic system in sheep erythrocytes. Alpha-toxin simultaneously induced hemolysis and a reduction in the levels of SM and formation of ceramide and sphingosine 1-phosphate (S1P). N-Oleoylethanolamine, a ceramidase inhibitor, inhibited the toxin-induced hemolysis and caused ceramide to accumulate in the toxin-treated cells. Furthermore, dl-threo-dihydrosphingosine and B-5354c, isolated from a novel marine bacterium, both sphingosine kinase inhibitors, blocked the toxin-induced hemolysis and production of S1P and caused sphingosine to accumulate. These observations suggest that the toxin-induced activation of the SM metabolic system is closely related to hemolysis. S1P potentiated the toxin-induced hemolysis of saponin-permeabilized erythrocytes but had no effect on that of intact cells. Preincubation of lysated sheep erythrocytes with pertussis toxin blocked the alpha-toxin-induced formation of ceramide from SM. In addition, incubation of C. botulinum C3 exoenzyme-treated lysates of sheep erythrocytes with alpha-toxin caused an accumulation of sphingosine and inhibition of the formation of S1P. These observations suggest that the alpha-toxin-induced hemolysis of sheep erythrocytes is dependent on the activation of the SM metabolic system through GTP-binding proteins, especially the formation of S1P. Topics: 4-Aminobenzoic Acid; ADP Ribose Transferases; Amidohydrolases; Animals; Bacterial Toxins; Botulinum Toxins; Calcium-Binding Proteins; Ceramidases; Chromatography, Thin Layer; Diglycerides; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Erythrocytes; Ethanolamines; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Triphosphate; Hemolysis; Inositol 1,4,5-Trisphosphate; Lysophospholipids; Oleic Acids; para-Aminobenzoates; Pertussis Toxin; Phosphatidylcholines; Phosphorylcholine; Phosphotransferases (Alcohol Group Acceptor); Rabbits; Sheep; Sphingomyelins; Sphingosine; Time Factors; Toxins, Biological; Type C Phospholipases | 2004 |