sphingosine-kinase has been researched along with Endometriosis* in 2 studies
2 other study(ies) available for sphingosine-kinase and Endometriosis
Article | Year |
---|---|
Targeting sphingosine kinase-1 with the low MW inhibitor SKI-5C suppresses the development of endometriotic lesions in mice.
Limited evidence suggests that the sphingosine-1-phosphate/sphingosine kinase 1 (S1P/SPHK1) signalling pathway is involved in the pathogenesis of endometriosis. Therefore, we analyzed in this study whether the inhibition of SPHK1 and, consequently, decreased levels of S1P affected the vascularization and growth of endometriotic lesions.. Endometriotic lesions were surgically induced in the peritoneal cavity and the dorsal skinfold chamber of female BALB/c mice. The animals received a daily dose of the SPHK1 inhibitor SKI-5C or vehicle (control). Analyses involved the determination of lesion growth, cyst formation, microvessel density and cell proliferation within peritoneal endometriotic lesions by means of high-resolution ultrasound imaging, caliper measurement, histology and immunohistochemistry. In the dorsal skinfold chamber model the development of newly formed microvascular networks and their microhemodynamic parameters within endometriotic lesions were investigated by means of intravital fluorescence microscopy.. SKI-5C significantly inhibited the development and vascularization of peritoneal endometriotic lesions, as indicated by a reduced growth and cyst formation, a lower microvessel density and a suppressed cell proliferation, when compared to vehicle-treated controls. Endometriotic lesions in dorsal skinfold chambers of SKI-5C-treated animals exhibited a significantly smaller lesion size, lower functional microvessel density, smaller microvessel diameters and a reduced blood perfusion of the newly developing microvascular networks.. SPHK1/S1P signalling promotes the establishment and progression of endometriotic lesions. The inhibition of this pathway suppresses the development of endometriotic lesions, suggesting SPHK1 as a potential novel target for future endometriosis therapy. Topics: Animals; Endometriosis; Female; Humans; Mice; Mice, Inbred BALB C; Neovascularization, Pathologic; Phosphotransferases (Alcohol Group Acceptor); Sphingosine | 2021 |
Sphingosine pathway deregulation in endometriotic tissues.
To investigate key genes expression of the sphingosine-1-phosphate pathway in endometriotic tissues.. A case-control laboratory study.. Tertiary care university hospital.. A total of 31 women, with (n = 16) and without (n = 15) endometriosis took part in the study.. After surgical excision with pathological analysis, endometrial specimens were obtained from women affected or not by endometriosis.. SPHK1-2, SGPP1-2, SGPL1, SPHKAP, and S1PR1-5 messenger RNA expression by quantitative real-time polymerase chain reaction (PCR) in the endometrium of 15 disease-free women, 16 eutopic and 16 ectopic endometrium of endometriosis-affected women. The S1PR1 and S1PR2 expression were further investigated by immunohistochemistry.. The SGPP2 expression was decreased in eutopic and ectopic endometrium of endometriosis-affected women (1.7- and 16.7-fold, respectively). The SGPP1, weakly expressed in healthy endometrium, is up-regulated in endometriosis-affected women (11.9- and 64.7-fold, respectively), but its expression remains low. The SGPL1 expression was decreased in ectopic endometrium (3.3-fold) and SPHKAP expression was increased in ectopic endometrium (112.6-fold) compared with endometrium of disease-free women. In endometriosis-affected women, S1PR3 expression was decreased in eutopic and ectopic endometrium (2.1- and 6.3-fold, respectively); S1PR2 and S1PR1 expression was increased in eutopic (2.5-fold) and ectopic endometrium (2.6-fold). These increases were confirmed at the protein levels by immunohistochemistry.. Expression of the enzymes implicated in the regulation of the sphingosine-1-phosphate level balance and of its receptors is overall heavily deregulated in endometriotic lesions in favor of a decreased sphingosine-1-phosphate catabolism. Our results plead for a role of the sphingosine pathway in establishing and survival of endometriotic lesions. Topics: Aldehyde-Lyases; Analysis of Variance; Case-Control Studies; Endometriosis; Endometrium; Female; Hospitals, University; Humans; Immunohistochemistry; Lysophospholipids; Membrane Proteins; Ovarian Diseases; Paris; Phosphoric Monoester Hydrolases; Phosphotransferases (Alcohol Group Acceptor); Real-Time Polymerase Chain Reaction; Receptors, Lysosphingolipid; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sphingosine; Sphingosine-1-Phosphate Receptors | 2012 |