sphingosine-kinase and Disease

sphingosine-kinase has been researched along with Disease* in 4 studies

Reviews

4 review(s) available for sphingosine-kinase and Disease

ArticleYear
Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: review of sphingosine kinase inhibitors.
    Biochimica et biophysica acta, 2013, Volume: 1831, Issue:1

    Sphingosine 1-phosphate (S1P) is an important bioactive sphingolipid metabolite that has been implicated in numerous physiological and cellular processes. Not only does S1P play a structural role in cells by defining the components of the plasma membrane, but in the last 20 years it has been implicated in various significant cell signaling pathways and physiological processes: for example, cell migration, survival and proliferation, cellular architecture, cell-cell contacts and adhesions, vascular development, atherosclerosis, acute pulmonary injury and respiratory distress, inflammation and immunity, and tumorogenesis and metastasis [1,2]. Given the wide variety of cellular and physiological processes in which S1P is involved, it is immediately obvious why the mechanisms governing S1P synthesis and degradation, and the manner in which these processes are regulated, are necessary to understand. In gaining more knowledge about regulation of the sphingosine kinase (SK)/S1P pathway, many potential therapeutic targets may be revealed. This review explores the roles of the SK/S1P pathway in disease, summarizes available SK enzyme inhibitors and examines their potential as therapeutic agents. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.

    Topics: Animals; Disease; Humans; Lysophospholipids; Molecular Targeted Therapy; Phosphotransferases (Alcohol Group Acceptor); Protein Kinase Inhibitors; Signal Transduction; Sphingosine

2013
Structure and catalytic function of sphingosine kinases: analysis by site-directed mutagenesis and enzyme kinetics.
    Biochimica et biophysica acta, 2013, Volume: 1831, Issue:1

    Sphingosine kinases 1 and 2 (SK1 and SK2) generate the bioactive lipid mediator sphingosine 1-phosphate and as such play a significant role in cell fate and in human health and disease. Despite significant interest in and examination of the role played by SK enzymes in disease, comparatively little is currently known about the three-dimensional structure and catalytic mechanisms of these enzymes. To date, limited numbers of studies have used site directed mutagenesis and activity determinations to examine the roles of individual SK residues in substrate, calmodulin, and membrane binding, as well as activation via phosphorylation. Assays are currently available that allow for both single and bisubstrate kinetic analysis of mutant proteins that show normal, lowered and enhanced activity as compared to wild type controls. Additional studies will be required to build on this foundation to completely understand SK mediated substrate binding and phosphoryl group transfer. A deeper understanding of the SK catalytic mechanism, as well as SK interactions with potential small molecule inhibitors will be invaluable to the future design and identification of SK activity modulators as research tools and potential therapeutics. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.

    Topics: Amino Acid Sequence; Biocatalysis; Disease; Humans; Kinetics; Molecular Sequence Data; Mutagenesis, Site-Directed; Phosphotransferases (Alcohol Group Acceptor); Structure-Activity Relationship

2013
Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease.
    Progress in lipid research, 2010, Volume: 49, Issue:4

    Simple bioactive sphingolipids include ceramide, sphingosine and their phosphorylated forms sphingosine 1-phosphate and ceramide 1-phosphate. These molecules are crucial regulators of cell functions. In particular, they play important roles in the regulation of angiogenesis, apoptosis, cell proliferation, differentiation, migration, and inflammation. Decoding the mechanisms by which these cellular functions are regulated requires detailed understanding of the signaling pathways that are implicated in these processes. Most importantly, the development of inhibitors of the enzymes involved in their metabolism may be crucial for establishing new therapeutic strategies for treatment of disease.

    Topics: Animals; Ceramidases; Ceramides; Disease; Humans; Inflammation; Isoenzymes; Lysophospholipids; Macrophages; Molecular Structure; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Sphingolipids; Sphingosine

2010
Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases.
    Biochimica et biophysica acta, 2006, Volume: 1758, Issue:12

    Sphingolipids are ubiquitous components of cell membranes and their metabolites ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. Cer and Sph are associated with growth arrest and apoptosis. Many stress stimuli increase levels of Cer and Sph, whereas suppression of apoptosis is associated with increased intracellular levels of S1P. In addition, extracellular/secreted S1P regulates cellular processes by binding to five specific G protein coupled-receptors (GPCRs). S1P is generated by phosphorylation of Sph catalyzed by two isoforms of sphingosine kinases (SphK), type 1 and type 2, which are critical regulators of the "sphingolipid rheostat", producing pro-survival S1P and decreasing levels of pro-apoptotic Sph. Since sphingolipid metabolism is often dysregulated in many diseases, targeting SphKs is potentially clinically relevant. Here we review the growing recent literature on the regulation and the roles of SphKs and S1P in apoptosis and diseases.

    Topics: Animals; Apoptosis; Disease; Enzyme Activation; Humans; Lysophospholipids; Phosphotransferases (Alcohol Group Acceptor); Sphingosine

2006