sphingosine-kinase and Chemical-and-Drug-Induced-Liver-Injury

sphingosine-kinase has been researched along with Chemical-and-Drug-Induced-Liver-Injury* in 6 studies

Other Studies

6 other study(ies) available for sphingosine-kinase and Chemical-and-Drug-Induced-Liver-Injury

ArticleYear
Inhibition of sphingosine kinase 1 ameliorates acute liver failure by reducing high-mobility group box 1 cytoplasmic translocation in liver cells.
    World journal of gastroenterology, 2015, Dec-14, Volume: 21, Issue:46

    To determine the therapeutic potential of sphingosine kinase 1 (Sphk1) inhibition and its underlying mechanism in a well-characterized mouse model of D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced acute liver failure (ALF).. Balb/c mice were randomly assigned to different groups, with ALF induced by intraperitoneal injection of D-GaIN (600 mg/kg) and LPS (10 μg/kg). The Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels at different time points within one week were determined using a multi-parametric analyzer. Serum high-mobility group box 1 (HMGB1), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-10, and sphingosine-1-phosphate were detected by enzyme-linked immunosorbent assay. Hepatic morphological changes at 36 h after acute liver injury induction were assessed by hematoxylin and eosin staining. HMGB1 expression in hepatocytes and cytoplasmic translocation were detected by immunohistochemistry. Expression of Sphk1 in liver tissue and peripheral blood mononuclear cells (PBMCs) was analyzed by Western blot.. The expression of Sphk1 in liver tissue and PBMCs was upregulated in GalN/LPS-induced ALF. Upregulated Sphk1 expression in liver tissue was mainly caused by Kupffer cells, the resident macrophages of the liver. The survival rates of mice in the N,N-dimethylsphingosine (DMS, a specific inhibitor of SphK1) treatment group were significantly higher than that of the control group (P < 0.001). DMS treatment significantly decreased the levels of serum ALT and AST at 6, 12, and 24 h compared with that of the control group (P < 0.01 for all). Serum HMGB1 levels at 6, 12, and 24 h, as well as serum TNF-α, IL-6, and IL-1β levels at 12 h, were significantly lower in the DMS treatment group than in the control group (P < 0.01 for all). Furthermore, hepatic inflammation, necrosis, and HMGB1 cytoplasm translocation in liver cells were significantly decreased in the DMS treatment group compared to the control group (43.72% ± 5.51% vs 3.57% ± 0.83%, χ(2) = 12.81, P < 0.01).. Inhibition of SphK1 ameliorates ALF by reducing HMGB1 cytoplasmic translocation in liver cells, and so might be a potential therapeutic strategy for this disease.

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cytoplasm; Cytoprotection; Disease Models, Animal; Down-Regulation; Galactosamine; HMGB1 Protein; Kupffer Cells; Liver; Liver Failure, Acute; Male; Mice, Inbred BALB C; Phosphotransferases (Alcohol Group Acceptor); Protein Kinase Inhibitors; Protein Transport; Signal Transduction; Sphingosine; Time Factors

2015
Isoflurane activates intestinal sphingosine kinase to protect against bilateral nephrectomy-induced liver and intestine dysfunction.
    American journal of physiology. Renal physiology, 2011, Volume: 300, Issue:1

    Acute kidney injury (AKI) frequently leads to systemic inflammation and extrarenal organ dysfunction. Volatile anesthetics are potent anti-inflammatory agents and protect against renal ischemia-reperfusion injury. Here, we sought to determine whether isoflurane, a commonly used volatile anesthetic, protects against AKI-induced liver and intestinal injury, the mechanisms involved in this protection, and whether this protection was independent of the degree of renal injury. Bilateral nephrectomy-induced AKI under pentobarbital sodium anesthesia led to severe hepatic and intestinal injury with periportal hepatocyte vacuolization, small intestinal necrosis, apoptosis, and proinflammatory mRNA upregulation. In contrast, isoflurane anesthesia reduced hepatic and intestinal injury after bilateral nephrectomy. Mechanistically, isoflurane anesthesia upregulated and induced small intestinal crypt sphingosine kinase-1 (SK1) as SK1 mRNA, protein, and enzyme activity increased with isoflurane treatment. Furthermore, isoflurane failed to protect mice treated with a selective SK inhibitor (SKI-II) or mice deficient in the SK1 enzyme against hepatic and intestinal dysfunction after bilateral nephrectomy, demonstrating the key role of SK1. Therefore, in addition to its potent anesthetic properties, isoflurane protects against AKI-induced liver and intestine injury via activation of small intestinal SK1 independently of the effects on the kidney. These findings may help to elucidate the cellular signaling pathways underlying volatile anesthetic-mediated hepatic and intestinal protection and result in novel clinical applications of volatile anesthetics to attenuate perioperative complications arising from AKI.

    Topics: Acute Kidney Injury; Alanine Transaminase; Anesthetics, Inhalation; Animals; Apoptosis; Chemical and Drug Induced Liver Injury; Enzyme Activation; Intestine, Small; Isoflurane; Liver; Male; Mice; Mice, Inbred C57BL; Necrosis; Nephrectomy; Phosphotransferases (Alcohol Group Acceptor)

2011
Inducible nitric oxide has protective effect on fumonisin B1 hepatotoxicity in mice via modulation of sphingosine kinase.
    Toxicology, 2007, Jan-05, Volume: 229, Issue:1-2

    Fumonisin B(1), a mycotoxin, is an inhibitor of ceramide synthase causing marked dysregulation of sphingolipid metabolism in cells. This mycotoxin causes accumulation of free sphingoid bases (sphingosine and dihydrosphingosine or sphinganine) and their metabolites, important messengers involved in signal transduction leading to either cell survival or death. Free sphingoid bases are known apoptotic molecules whereas sphingosine 1-phosphate is protective. We previously reported that fumonisin B(1) caused sphingosine kinase (SPHK) induction along with the increase of serine palmitoyltransferase (SPT). Fumonisin B(1) also increased inducible nitric oxide synthase (iNOS) expression. In the current study we employed a mouse strain with the targeted deletion of iNOS gene (Nos-KO) to evaluate the role of nitric oxide (NO) on fumonisin B(1)-induced hepatotoxicity. The Nos-KO mice exhibited increased hepatotoxicity after subacute fumonisin B(1) exposure compared to their wild type counterparts, the liver regeneration was lower in Nos-KO compared to that in the WT mice. Increased hepatotoxicity in Nos-KO was not related to the extent of free sphingoid base accumulation after fumonisin B(1) treatment; however, it was accompanied by a lack of fumonisin B(1)-induced SPHK induction. The fumonisin B(1)-induced SPT was unaffected by lack of iNOS gene. Deletion of iNOS gene did not prevent fumonisin B(1)-dependent induction of inflammatory cytokines, namely tumor necrosis factor alpha, interferon gamma and interleukin-12. The lack of fumonisin B(1)-induced SPHK induction in Nos-KO was supported by a similar effect on phosphorylated metabolites of sphingoid bases; the equilibrium between sphingoid bases and their phosphates is maintained by SPHK. We therefore conclude that iNOS induction produced by fumonisin B(1) modulates SPHK activity; the lack of iNOS prevents generation of sphingosine 1-phosphate and deprives cells from its protective effects.

    Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Carcinogens, Environmental; Cell Proliferation; Chemical and Drug Induced Liver Injury; Fumonisins; Hepatocytes; In Situ Nick-End Labeling; Interferon-gamma; Interleukin-12; Liver Diseases; Liver Regeneration; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitric Oxide; Nitric Oxide Synthase Type II; Phosphotransferases (Alcohol Group Acceptor); RNA, Messenger; Sphingosine; Tumor Necrosis Factor-alpha; Weight Loss

2007
The sphingosine 1-phosphate receptor S1P2 triggers hepatic wound healing.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2007, Volume: 21, Issue:9

    Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid produced by sphingosine kinase (SphK1 and 2). We previously showed that S1P receptors (S1P1, S1P2, and S1P3) are expressed in hepatic myofibroblasts (hMF), a population of cells that triggers matrix remodeling during liver injury. Here we investigated the function of these receptors in the wound healing response to acute liver injury elicited by carbon tetrachloride, a process that associates hepatocyte proliferation and matrix remodeling. Acute liver injury was associated with the induction of S1P2, S1P3, SphK1, and SphK2 mRNAs and increased SphK activity, with no change in S1P1 expression. Necrosis, inflammation, and hepatocyte regeneration were similar in S1P2-/- and wild-type (WT) mice. However, compared with WT mice, S1P2-/- mice displayed reduced accumulation of hMF, as shown by lower induction of smooth muscle alpha-actin mRNA and lower induction of TIMP-1, TGF-beta1, and PDGF-BB mRNAs, overall reflecting reduced activation of remodeling in response to liver injury. The wound healing response was similar in S1P3-/- and WT mice. In vitro, S1P enhanced proliferation of cultured WT hMF, and PDGF-BB further enhanced the mitogenic effect of S1P. In keeping with these findings, PDGF-BB up-regulated S1P2 and SphK1 mRNAs, increased SphK activity, and S1P2 induced PDGF-BB mRNA. These effects were blunted in S1P2-/- cells, and S1P2-/- hMF exhibited reduced mitogenic and comitogenic responses to S1P. These results unravel a novel major role of S1P2 in the wound healing response to acute liver injury by a mechanism involving enhanced proliferation of hMF.

    Topics: Acute Disease; Animals; Becaplermin; Carbon Tetrachloride Poisoning; Cell Division; Cells, Cultured; Chemical and Drug Induced Liver Injury; DNA Replication; Enzyme Induction; Extracellular Matrix; Fibroblasts; Gene Expression Regulation; Liver Regeneration; Lysophospholipids; Mice; Mice, Inbred C57BL; Mice, Knockout; Myoblasts, Smooth Muscle; Necrosis; Phosphotransferases (Alcohol Group Acceptor); Platelet-Derived Growth Factor; Proliferating Cell Nuclear Antigen; Proto-Oncogene Proteins c-sis; Receptors, Lysosphingolipid; Sphingosine; Sphingosine-1-Phosphate Receptors; Tissue Inhibitor of Metalloproteinase-1; Transforming Growth Factor beta1

2007
Elevation of sphingoid base 1-phosphate as a potential contributor to hepatotoxicity in fumonisin B1-exposed mice.
    Archives of pharmacal research, 2007, Volume: 30, Issue:8

    Fumonisins are causative agents of diseases in mice and rats, including liver and renal toxicities, as well as cancer, and are specific inhibitors of ceramide synthase in the metabolism of sphingolipid. The purpose of this study was to determine whether an elevated level of sphingoid base 1-phosphate was related to the expressions of metabolism enzymes in the liver of fumonisin B1 (FB1)-treated mice and acted as a contributing factor to hepatotoxicity. In our previous study, FB1 was confirmed to be toxic to both liver and kidneys, coupled with simultaneous elevation of sphinganine 1-phosphate. ICR mice were treated intraperitoneally with 10 mg/kg/day FB1 for 5 days, with the concentrations of sphingolipid metabolites in the serum and liver measured using HPLC following Bligh-Dyer extraction. The levels of sphingoid bases and their 1-phosphates in the serum and liver were markedly elevated in response to treatment with FB1. In the liver, FB1 increased the expression of sphingosine kinase and inhibited the expression of sphingosine 1-phosphate lyase. The cleaved form of caspase-3 was detected in the liver of FB1-treated mice, indicating the occurrence of apoptosis in the liver following exposure to FB1. The expressions of proapoptotic signaling molecules, such as phosphorylated forms of c-Jun N-terminus kinase (JNK), p38 MAPK and extracellular signal-regulated kinase (ERK), were increased in the liver of FB1-treated mice. In conclusion, these results suggest the elevation of sphingoid base 1-phosphate, as a result of the activation of sphingosine kinase and the inhibition of sphingosine 1-phosphate lyase, may be a major target for FB1-induced hepatotoxicity via the activation of an apoptotic signaling pathway.

    Topics: Aldehyde-Lyases; Animals; Caspase 3; Chemical and Drug Induced Liver Injury; Fumonisins; Liver; Lysophospholipids; Mice; Mice, Inbred ICR; Mitogen-Activated Protein Kinases; Mycotoxins; Phosphotransferases (Alcohol Group Acceptor); Sphingosine

2007
Ceramide synthase inhibition by fumonisin B1 treatment activates sphingolipid-metabolizing systems in mouse liver.
    Toxicological sciences : an official journal of the Society of Toxicology, 2006, Volume: 94, Issue:2

    Sphingolipids are important components of cell structure and cell signaling. Both external and internal stimuli can alter levels of cellular sphingolipids by regulating enzyme activities associated with sphingolipid metabolism. Fumonisin B1, mycotoxin produced by Fusarium verticillioides, is a reportedly specific inhibitor of ceramide synthase. In order to test our hypothesis whether ceramide synthase inhibition by fumonisin B1 alters other sphingolipid-metabolizing enzymes, we investigated the changes in free sphingoid bases and sphingomyelin (SM) and activities of key enzymes for their metabolism, sphingomyelinase (SMase), serine palmitoyltransferase (SPT), and sphingosine kinase (SPHK) in mouse liver. The hepatic free sphingoid bases increased significantly following five daily treatments with fumonisin B1 in mice. The activity of acidic SMase was enhanced by fumonisin B1, accompanied with a decrease in liver SM content. The expression and activities of SPT and SPHK1 in liver increased significantly following fumonisin B1 treatment. Another hepatotoxicant acetaminophen caused liver regeneration similar to fumonisin B1 but did not produce similar effects on liver sphingolipid-metabolizing enzymes, suggesting that activation of sphingolipid metabolism was not a consequence of hepatocyte regeneration. Data suggest that ceramide synthase inhibition by fumonisin B1 treatment stimulates sphingolipid-metabolizing systems to maintain a balance of cellular sphingolipids.

    Topics: Animals; Chemical and Drug Induced Liver Injury; Dose-Response Relationship, Drug; Enzyme Inhibitors; Female; Fumonisins; Injections, Subcutaneous; Isoenzymes; Liver; Mice; Mice, Inbred C57BL; Mycotoxins; Oxidoreductases; Phosphotransferases (Alcohol Group Acceptor); Serine C-Palmitoyltransferase; Sphingolipids; Sphingomyelin Phosphodiesterase; Sphingomyelins

2006