sphingosine-kinase and Brain-Neoplasms

sphingosine-kinase has been researched along with Brain-Neoplasms* in 16 studies

Reviews

1 review(s) available for sphingosine-kinase and Brain-Neoplasms

ArticleYear
Sphingosine Kinase Inhibitors as Maintenance Therapy of Glioblastoma After Ceramide-Induced Response.
    Anticancer research, 2016, Volume: 36, Issue:5

    Ceramide and sphingosine 1-phosphate (S1P) are sphingolipid metabolites with important signaling functions. Ceramides promote apoptosis, whereas S1P favors proliferation, angiogenesis and cell survival. The balance between these opposing signaling functions is referred to as the sphingolipid rheostat. A shift in this balance toward S1P is seen in glioblastoma (GBM) and other cancers, and results in tumor cell survival and resistance to chemotherapy. Sphingosine kinase (SK), the enzyme responsible for transforming sphingosine into S1P, plays the critical role in modulating the balance between S1P and ceramides. Chemotherapeutic agents or radiation therapy may induce short-term responses in GBM patients by increasing ceramide levels. However, we believe that the enzyme SK may cause the increased ceramide to be metabolized to S1P, restoring the abnormally high S1P to ceramide balance, and that this may be part of the reason for the near-100% recurrence rate of GBM. The use of maintenance therapy with an SK inhibitor, in patients with GBM who have tumor reduction or stable disease after therapy, should be investigated.

    Topics: Animals; Brain Neoplasms; Ceramides; Enzyme Inhibitors; Glioblastoma; Humans; Mice; Phosphotransferases (Alcohol Group Acceptor)

2016

Trials

1 trial(s) available for sphingosine-kinase and Brain-Neoplasms

ArticleYear
A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis.
    The Journal of biological chemistry, 2013, Dec-27, Volume: 288, Issue:52

    Studies in cell culture and mouse models of cancer have indicated that the soluble sphingolipid metabolite sphingosine 1-phosphate (S1P) promotes cancer cell proliferation, survival, invasiveness, and tumor angiogenesis. In contrast, its metabolic precursor ceramide is prodifferentiative and proapoptotic. To determine whether sphingolipid balance plays a significant role in glioma malignancy, we undertook a comprehensive analysis of sphingolipid metabolites in human glioma and normal gray matter tissue specimens. We demonstrate, for the first time, a systematic shift in sphingolipid metabolism favoring S1P over ceramide, which increases with increasing cancer grade. S1P content was, on average, 9-fold higher in glioblastoma tissues compared with normal gray matter, whereas the most abundant form of ceramide in the brain, C18 ceramide, was on average 5-fold lower. Increased S1P content in the tumors was significantly correlated with increased sphingosine kinase 1 (SPHK1) and decreased sphingosine phosphate phosphatase 2 (SGPP2) expression. Inhibition of S1P production by cultured glioblastoma cells, using a highly potent and selective SPHK1 inhibitor, blocked angiogenesis in cocultured endothelial cells without affecting VEGF secretion. Our findings validate the hypothesis that an altered ceramide/S1P balance is an important feature of human cancers and support the development of SPHK1 inhibitors as antiangiogenic agents for cancer therapy.

    Topics: Angiogenesis Inhibitors; Animals; Brain Neoplasms; Ceramides; Enzyme Inhibitors; Follow-Up Studies; Glioblastoma; Humans; Lipid Metabolism; Lysophospholipids; Male; Membrane Proteins; Mice; Neoplasm Proteins; Neovascularization, Pathologic; Phosphoric Monoester Hydrolases; Phosphotransferases (Alcohol Group Acceptor); Sphingosine; Vascular Endothelial Growth Factor A

2013

Other Studies

14 other study(ies) available for sphingosine-kinase and Brain-Neoplasms

ArticleYear
Tumor-Educated Platelets and Angiogenesis in Glioblastoma: Another Brick in the Wall for Novel Prognostic and Targetable Biomarkers, Changing the Vision from a Localized Tumor to a Systemic Pathology.
    Cells, 2020, 01-25, Volume: 9, Issue:2

    Topics: Adenosine Diphosphate; Adult; Aged; Biomarkers, Tumor; Blood Platelets; Brain Neoplasms; Cells, Cultured; Endothelial Cells; Female; Glioblastoma; Humans; Male; Middle Aged; Neovascularization, Pathologic; Peptide Fragments; Phosphotransferases (Alcohol Group Acceptor); Platelet Membrane Glycoproteins; Prognosis; Sphingosine-1-Phosphate Receptors; Vascular Endothelial Growth Factor Receptor-1; Vascular Endothelial Growth Factor Receptor-2

2020
MicroRNA-28-5p regulates glioma cell proliferation, invasion and migration by targeting SphK1.
    European review for medical and pharmacological sciences, 2019, Volume: 23, Issue:15

    MicroRNAs (miRNAs) are a conserved class of endogenous and short non-coding RNAs that post-transcriptionally regulate the expression of genes involved in diverse cellular processes. MiR-28-5p has been reported to be associated with several cancers, including human glioma. However, the roles of miR-28-5p in glioma development are poorly understood.. Sixteen human glioma tissues and paired adjacent normal tissues were acquired through the Gansu Provincial Hospital. We performed quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) to detect the miR-28-5p expression between 16 paired adjacent normal and glioma tissues, as well as the miR-28-5p expression between normal human astrocytes cells and five glioma cell lines. To examine the functional roles of the downregulated miR-28-5p in glioma, cell viability and colony formation assays were performed for the analysis of cell growth. We overexpressed miR-28-5p by transient transfection of miRNAs mimics and performed the transwell Matrigel invasion assay and transwell migration (without Matrigel) assay. To investigate the roles of miR-28-5p in SphK1 expression, Western blot and Real Time-Polymerase Chain Reaction assays were performed.. In this work, we demonstrated that miR-28-5p is downregulated in glioma tissues compared to the adjacent normal tissues. Functional studies showed that miR-28-5p overexpression inhibited the cell viability, colony formation and proliferation; meanwhile, it induced the cell apoptosis. The transwell invasion assay indicated that miR-28-5p blocked the invasion and migration of glioma cells. SphK1 (Sphingosine kinase 1 antibody) is predicted as a targeted candidate of miR-28-5p. Then, the Luciferase reporter assay, Western blot and Real Time-Polymerase Chain Reaction (PCR) validated that miR-28-5p negatively regulated SphK1 expression by directly targeting its 3'untranslated regions (3'UTR) in U87 cells. Furthermore, rescue assay suggested that overexpression of SphK1 without its 3'UTR could prevent the miR-28-5p from inducing the inhibition of glioma tumor cells.. Our findings showed that miR-28-5p could suppress the growth, invasion and migration of glioma cells by suppressing the SphK1 expression. The results demonstrated that miR-28-5p might serve as an important potential therapeutic target for glioma.

    Topics: 3' Untranslated Regions; Apoptosis; Brain; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Cell Proliferation; Down-Regulation; Gene Expression Regulation, Neoplastic; Gene Knockdown Techniques; Glioma; Humans; MicroRNAs; Neoplasm Invasiveness; Phosphotransferases (Alcohol Group Acceptor); Prognosis

2019
Comparative analysis of the effects of a sphingosine kinase inhibitor to temozolomide and radiation treatment on glioblastoma cell lines.
    Cancer biology & therapy, 2017, 06-03, Volume: 18, Issue:6

    Glioblastoma multiforme (GBM) exhibits high resistance to the standard treatment of temozolomide (TMZ) combined with radiotherapy, due to its remarkable cell heterogeneity. Accordingly, there is a need to target alternative molecules enhancing specific GBM autocrine or paracrine mechanisms and amplifying the effect of standard treatment. Sphingosine 1-phosphate (S1P) is such a lipid target molecule with an important role in cell invasion and proliferation. Sphingosine kinase inhibitors (SKI) prevent S1P formation and induce increased production of reactive oxygen species (ROS), which may potentiate radiation cytotoxicity. We analyzed the effect of SKI singular versus combined treatments with TMZ and radiation on 2 human GBM cell lines characterized by a lack of MGMT expression and low or high expression of the anti-oxidant enzyme, glutathione peroxidase 1 (GPx1). Effects were drug concentration-, cell line-dependent and partly ROS-mediated. Clonogenic survival assay demonstrates that SKI was more effective than TMZ in increasing the sensitivity of U87 cells, which express low GPx1 amount, to a 2 Gy X-ray dose. Addition of both SKI and TMZ drastically decreased U87 cells survival compared with the combination temozolomide/radiation. SKI less effectively than TMZ sensitized LN229 cells to the 2 Gy X-ray dose. Its combination to TMZ in absence of irradiation was as efficient as TMZ combination with X-ray. We provide first evidence for SKI as an alternative or complementary treatment to TMZ, and for efficient combinations of low doses of drugs and X-ray. These may help as novel bi-modal and tri-modal therapies to contend with GBM heterogeneity.

    Topics: Antineoplastic Agents, Alkylating; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Cell Survival; Chemoradiotherapy; Dacarbazine; Drug Screening Assays, Antitumor; Drug Synergism; Glioblastoma; Humans; Phosphotransferases (Alcohol Group Acceptor); Radiation Tolerance; Radiation-Sensitizing Agents; Temozolomide

2017
Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme.
    Oncotarget, 2016, Mar-15, Volume: 7, Issue:11

    A signaling molecule which is involved in proliferation and migration of malignant cells is the lipid mediator sphingosine-1-phosphate (S1P). There are hints for a potential role of S1P signaling in malignant brain tumors such as glioblastoma multiforme (GBM) which is characterized by a poor prognosis. Therefore, a comprehensive expression analysis of S1P receptors (S1P1-S1P5) and S1P metabolizing enzymes in human GBM (n = 117) compared to healthy brain (n = 10) was performed to evaluate their role for patient´s survival. Furthermore, influence of S1P receptor inhibition on proliferation and migration were studied in LN18 GBM cells. Compared to control brain, mRNA levels of S1P1, S1P2, S1P3 and S1P generating sphingosine kinase-1 were elevated in GBM. Kaplan-Meier analyses demonstrated an association between S1P1 and S1P2 with patient´s survival times. In vitro, an inhibitory effect of the SphK inhibitor SKI-II on viability of LN18 cells was shown. S1P itself had no effect on viability but stimulated LN18 migration which was blocked by inhibition of S1P1 and S1P2. The participation of S1P1 and S1P2 in LN18 migration was further supported by siRNA-mediated silencing of these receptors. Immunoblots and inhibition experiments suggest an involvement of the PI3-kinase/AKT1 pathway in the chemotactic effect of S1P in LN18 cells.In summary, our data argue for a role of S1P signaling in proliferation and migration of GBM cells. Individual components of the S1P pathway represent prognostic factors for patients with GBM. Perspectively, a selective modulation of S1P receptor subtypes could represent a therapeutic approach for GBM patients and requires further evaluation.

    Topics: Biomarkers, Tumor; Brain Neoplasms; Cell Movement; Glioblastoma; Humans; Kaplan-Meier Estimate; Lysophospholipids; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid; Signal Transduction; Sphingosine

2016
A sphingosine kinase inhibitor combined with temozolomide induces glioblastoma cell death through accumulation of dihydrosphingosine and dihydroceramide, endoplasmic reticulum stress and autophagy.
    Cell death & disease, 2014, Sep-25, Volume: 5

    Glioblastomas (GBMs) are very aggressive tumors with low chemosensitivity. The DNA-alkylating agent temozolomide (TMZ) is currently the most efficient chemotoxic drug for GBM therapy; however, many patients develop resistance to TMZ. Combining TMZ with another agent could present an improved treatment option if it could overcome TMZ resistance and avoid side effects. Sphingosine kinase inhibitors (SKIs) have emerged as anticancer agents. Sphingosine kinases are often overexpressed in tumors where their activity of phosphorylating sphingosine (Sph) contributes to tumor growth and migration. They control the levels of the pro-apoptotic ceramide (Cer) and Sph and of the pro-survival sphingosine-1 phosphate. In the present work, TMZ was combined with a specific SKI, and the cytotoxic effect of each drug alone or in combination was tested on GBM cell lines. The combination of sublethal doses of both agents resulted in the cell death potentiation of GBM cell lines without affecting astrocyte viability. It triggered a caspase-3-dependent cell death that was preceded by accumulation of dihydrosphingosine (dhSph) and dihydroceramide (dhCer), oxidative stress, endoplasmic reticulum stress, and autophagy. Autophagy was identified as the crucial switch that facilitated induction of this cell death potentiation. The sublethal dose of the inhibitor induced these stress events, whereas that of TMZ induced the destructive autophagy switch. Remarkably, neither Cer nor Sph, but rather the Cer intermediates, dhSph and dhCer, was involved in the cytotoxicity from the combination. Cell lines sensitive to the combination expressed low levels of the antioxidant enzyme glutathione peroxidase-1, indicating this enzyme as a potential marker of sensitivity to such treatment. This work shows for the first time a strong interaction between a SKI and TMZ, leading to a tumor cell-specific death induction. It further demonstrates the biological relevance of dihydrosphingolipids in cell death mechanisms and emphasizes the potential of drugs that affect sphingolipid metabolism for cancer therapy.

    Topics: Antineoplastic Agents; Apoptosis; Autophagy; Brain Neoplasms; Cell Death; Cell Line, Tumor; Ceramides; Dacarbazine; Drug Resistance, Neoplasm; Drug Therapy, Combination; Endoplasmic Reticulum Stress; Enzyme Inhibitors; Glioblastoma; Humans; Phosphotransferases (Alcohol Group Acceptor); Sphingosine; Temozolomide

2014
Extracellular sphingosine-1-phosphate: a novel actor in human glioblastoma stem cell survival.
    PloS one, 2013, Volume: 8, Issue:6

    Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs), a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P) a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ), and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source of extracellular S1P, which might act as an autocrine/paracrine signal contributing to their malignant properties.

    Topics: Brain Neoplasms; Cell Line, Tumor; Cell Separation; Cell Survival; Dacarbazine; Drug Resistance, Neoplasm; Extracellular Space; Glioblastoma; Humans; Intracellular Space; Lysophospholipids; Models, Biological; Neoplastic Stem Cells; Phosphotransferases (Alcohol Group Acceptor); Sphingosine; Temozolomide

2013
The role of sphingosine kinase-1 in EGFRvIII-regulated growth and survival of glioblastoma cells.
    Journal of neuro-oncology, 2011, Volume: 102, Issue:3

    We have previously shown that high expression levels of the lipid kinase sphingosine kinase-1 (SphK1) correlate with poor survival of glioblastoma (GBM) patients. In this study we examined the regulation of SphK1 expression by epidermal growth factor receptor (EGFR) signaling in GBM cells. As the EGFR gene is often overexpressed and mutated in GBM, and EGFR has been shown to regulate SphK1 in some cell types, we examined the effect of EGF signaling and the constitutively active EGFRvIII mutant on SphK1 in GBM cells. Treatment of glioma cell lines with EGF led to increased expression and activity of SphK1. Expression of EGFRvIII in glioma cells also activated and induced SphK1. In addition, siRNA to SphK1 partially inhibited EGFRvIII-induced growth and survival of glioma cells as well as ERK MAP kinase activation. To further evaluate the connection between EGFR and SphK1 in GBM we examined primary neurosphere cells isolated from fresh human GBM tissue. The GBM-derived neurosphere cell line GBM9, which forms GBM-like tumors intracranially in nude mice, maintained expression of EGFRvIII in culture and had high levels of SphK1 activity. EGFR inhibitors modestly decreased SphK1 activity and proliferation of GBM9 cells. More extensive blockage of SphK1 activity by a SphK inhibitor, potently blocked cell proliferation and induced apoptotic cell death of GBM9 cells. Thus, SphK1 activity is necessary for survival of GBM-derived neurosphere cells, and EGFRvIII partially utilizes SphK1 to further enhance cell proliferation.

    Topics: Animals; Annexin A5; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Survival; Disease Models, Animal; Dose-Response Relationship, Drug; Epidermal Growth Factor; ErbB Receptors; Female; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Mice; Mice, Nude; Mutation; Phosphotransferases (Alcohol Group Acceptor); RNA, Small Interfering; Signal Transduction; Time Factors

2011
Sphingolipid modulation of angiogenic factor expression in neuroblastoma.
    Cancer prevention research (Philadelphia, Pa.), 2011, Volume: 4, Issue:8

    Metabolism of sphingolipids into downstream lipid mediators followed by signaling modulates tumor microenvironment and the cancer cells to influence tumor progression. As such, sphingolipid signaling represents a novel way to modulate tumor biology. Neuroblastoma (NB), the most common extracranial solid tumor of childhood, is highly angiogenic and often displays poor prognosis. However, the role of sphingolipid mediators is not known in NB. We found that NB expresses high levels of sphingosine kinase-2, which is essential for the formation of sphingosine-1-phosphate (S1P). S1P induced VEGF expression in SK-N-AS NB cells. The effect occurred at the transcriptional level. Hypoxia in combination with S1P had a synergistic effect on VEGF expression. Strong correlation was detected between S1P receptor-2 (S1P(2)) and VEGF mRNAs in 11 different cell lines and 17 NB tissues. Blockade of S1P(2) with the selective antagonist JTE-013 significantly inhibited S1P-induced VEGF expression. Overexpression and knockdown of S1P(2) in SK-N-AS cells increased or inhibited S1P-induced VEGF secretion, respectively. Interestingly, JTE-013 significantly inhibited tumor growth, VEGF mRNA expression, and induced apoptosis in the NB tumor xenografts. Taken together, our data suggest that enhanced formation of sphingolipid mediator S1P in NB profoundly influences tumor microenvironment by inducing VEGF expression via S1P(2). Modulation of sphingolipid signaling by inhibiting S1P(2) may constitute a novel strategy to control NB.

    Topics: Angiogenesis Inducing Agents; Animals; Brain Neoplasms; Cell Line, Tumor; Enzyme-Linked Immunosorbent Assay; Gene Expression Regulation, Neoplastic; Humans; Hypoxia; In Situ Nick-End Labeling; Lysophospholipids; Male; Mice; Mice, Nude; Neuroblastoma; Phosphotransferases (Alcohol Group Acceptor); Platelet Endothelial Cell Adhesion Molecule-1; Sphingolipids; Sphingosine; Vascular Endothelial Growth Factor A

2011
Sphingosine kinase 1 regulates the Akt/FOXO3a/Bim pathway and contributes to apoptosis resistance in glioma cells.
    PloS one, 2011, Volume: 6, Issue:5

    The aim of this study was to investigate the mechanism through which Sphingosine kinase-1 (SPHK1) exerts its anti-apoptosis activity in glioma cancer cells. We here report that dysregulation of SPHK1 alters the sensitivity of glioma to apoptosis both in vitro and in vivo. Further mechanistic study examined the expression of Bcl-2 family members, including Bcl-2, Mcl-1, Bax and Bim, in SPHK1-overexpressing glioma cells and revealed that only pro-apoptotic Bim was downregulated by SPHK1. Moreover, the transcriptional level of Bim was also altered by SPHK1 in glioma cells. We next confirmed the correlation between SPHK1 and Bim expression in primary glioma specimens. Importantly, increasing SPHK1 expression in glioma cells markedly elevated Akt activity and phosphorylated inactivation of FOXO3a, which led to downregulation of Bim. A pharmacological approach showed that these effects of SPHK1 were dependent on phosphatidylinositol 3-kinase (PI3K). Furthermore, effects of SPHK1 on Akt/FOXO3a/Bim pathway could be reversed by SPHK1 specific RNA interference or SPHK1 inhibitor. Collectively, our results indicate that regulation of the Akt/FOXO3a/Bim pathway may be a novel mechanism by which SPHK1 protects glioma cells from apoptosis, thereby involved in glioma tumorigenesis.

    Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Bcl-2-Like Protein 11; Blotting, Western; Brain Neoplasms; Forkhead Box Protein O3; Forkhead Transcription Factors; Glioma; Humans; Immunoenzyme Techniques; Luciferases; Membrane Proteins; Mice; Mice, Nude; Phosphatidylinositol 3-Kinase; Phosphorylation; Phosphotransferases (Alcohol Group Acceptor); Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; RNA, Small Interfering; Signal Transduction; Tumor Cells, Cultured

2011
Sphingosine-1-phosphate and interleukin-1 independently regulate plasminogen activator inhibitor-1 and urokinase-type plasminogen activator receptor expression in glioblastoma cells: implications for invasiveness.
    Molecular cancer research : MCR, 2008, Volume: 6, Issue:9

    Glioblastoma multiforme is an invasive primary brain tumor, which evades the current standard treatments. The invasion of glioblastoma cells into healthy brain tissue partly depends on the proteolytic and nonproteolytic activities of the plasminogen activator system proteins, including the urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor 1 (PAI-1), and a receptor for uPA (uPAR). Here we show that sphingosine-1-phosphate (S1P) and the inflammatory mediator interleukin-1 (IL-1) increase the mRNA and protein expression of PAI-1 and uPAR and enhance the invasion of U373 glioblastoma cells. Although IL-1 enhanced the expression of sphingosine kinase 1 (SphK1), the enzyme that produces S1P, down-regulation of SphK1 had no effect on the IL-1-induced uPAR or PAI-1 mRNA expression, suggesting that these actions of IL-1 are independent of S1P production. Indeed, the S1P-induced mRNA expression of uPAR and PAI-1 was blocked by the S1P(2) receptor antagonist JTE013 and by the down-regulation of S1P(2) using siRNA. Accordingly, the inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 and Rho-kinase, two downstream signaling cascades activated by S1P(2), blocked the activation of PAI-1 and uPAR mRNA expression by S1P. More importantly, the attachment of glioblastoma cells was inhibited by the addition of exogenous PAI-1 or siRNA to uPAR, whereas the invasion of glioblastoma cells induced by S1P or IL-1 correlated with their ability to enhance the expression of PAI-1 and uPAR. Collectively, these results indicate that S1P and IL-1 activate distinct pathways leading to the mRNA and protein expression of PAI-1 and uPAR, which are important for glioblastoma invasiveness.

    Topics: Blotting, Northern; Blotting, Western; Brain Neoplasms; Cell Adhesion; Glioblastoma; Humans; Interleukin-1; Lysophospholipids; Mitogen-Activated Protein Kinases; Neoplasm Invasiveness; Phosphotransferases (Alcohol Group Acceptor); Plasminogen Activator Inhibitor 1; Receptors, Cell Surface; Receptors, Urokinase Plasminogen Activator; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Sphingosine; Tumor Cells, Cultured; Urokinase-Type Plasminogen Activator

2008
Clinical significance of sphingosine kinase-1 expression in human astrocytomas progression and overall patient survival.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2008, Nov-01, Volume: 14, Issue:21

    To characterize the expression of sphingosine kinase-1 (SPHK1) in human astrocytomas and to investigate the association between SPHK1 expression and progression of astrocytomas.. The expression of SPHK1 in normal human astrocytes, astrocytoma cell lines, and four pairs of matched astrocytoma tissues and their adjacent normal brain tissues were detected by quantitative reverse transcription-PCR and Western blot. In addition, SPHK1 protein expression was examined in 243 cases of histologically characterized astrocytomas by immunohistochemistry. Statistical analyses were applied to test for prognostic and diagnostic associations.. SPHK1 in astrocytoma cell lines was elevated at both mRNA and protein levels, and the SPHK1 mRNA and protein were significantly up-regulated by up to 6.8- and 40-fold, respectively, in primary astrocytomas compared with those in the adjacent noncancerous brain tissues. Immunohistochemical analysis showed that 100 of 243 (41.2%) paraffin-embedded archival astrocytoma biopsies exhibited high expression of SPHK1. Statistical analysis suggested that the up-regulation of SPHK1 was significantly correlated with the histologic grade of astrocytoma (P=0.000) and that patients with high SPHK1 level exhibited shorter survival time (P<0.001). Multivariate analysis revealed that SPHK1 up-regulation might be an independent prognostic indicator for the survival of patients with astrocytoma.. SPHK1 might represent a novel and useful prognostic marker for astrocytoma and play a role during the development and progression of the disease.

    Topics: Adult; Aged; Aged, 80 and over; Astrocytoma; Biomarkers, Tumor; Brain Neoplasms; Disease Progression; Female; Gene Expression; Humans; Male; Middle Aged; Phosphotransferases (Alcohol Group Acceptor); Prognosis; Survival Analysis

2008
Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2.
    The Journal of biological chemistry, 2008, Feb-08, Volume: 283, Issue:6

    Sphingosine 1-phosphate (S1P), a sphingolipid metabolite that plays an important role in the regulation of cell survival, growth, migration, and angiogenesis, acts both inside the cells and as an extracellular mediator through binding to five G protein-coupled receptors (S1P(1-5)). Sphingosine kinase 1 (SK1), the enzyme responsible for S1P production, is overexpressed in many solid tumors, including gliomas. One common feature of these tumors is the presence of "hypoxic regions," characterized by cells expressing high levels of hypoxia-inducible factors HIF-1alpha and HIF-2alpha, two transcription regulators that modulate the levels of proteins with crucial roles in tumor progression. So far, nothing is known about the role and the regulation of SK1 during tumor-induced hypoxia or about SK1 regulation and HIFs. Here we investigated the role of HIF-1alpha and HIF-2alpha in the regulation of SK1 during hypoxic stress in glioma-derived U87MG cells. We report that hypoxia increases SK1 mRNA levels, protein expression, and enzyme activity, followed by intracellular S1P production and S1P release. Interestingly, knockdown of HIF-2alpha by small interfering RNA abolished the induction of SK1 and the production of extracellular S1P after CoCl(2) treatment, whereas HIF-1alpha small interfering RNA resulted in an increase of HIF-2alpha and of SK1 protein levels. Moreover, using chromatin immunoprecipitation analysis, we demonstrate that HIF-2alpha binds the SK1 promoter. Functionally, we demonstrate that conditioned medium from hypoxia-treated tumor cells results in neoangiogenesis in human umbilical vein endothelial cells in a S1P receptor-dependent manner. These studies provide evidence of a link between S1P production as a potent angiogenic agent and the hypoxic phenotype observed in many tumors.

    Topics: Basic Helix-Loop-Helix Transcription Factors; Brain Neoplasms; Disease Progression; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Glioma; Humans; Hypoxia-Inducible Factor 1; Phosphotransferases (Alcohol Group Acceptor); Promoter Regions, Genetic; RNA, Messenger; RNA, Small Interfering; Transcription, Genetic; Up-Regulation

2008
Tumor necrosis factor-alpha-stimulated cell proliferation is mediated through sphingosine kinase-dependent Akt activation and cyclin D expression.
    The Journal of biological chemistry, 2007, Jan-12, Volume: 282, Issue:2

    Tumor necrosis factor-alpha (TNF-alpha) has been shown to activate sphingosine kinase (SphK) in a variety of cell types. The extent to which SphK signaling mediates the pleiotropic effects of TNF-alpha is not entirely clear. The current study examined the role of SphK activity in TNF-alpha-stimulated cell proliferation in 1321N1 glioblastoma cells. We first demonstrated that pharmacological inhibitors of SphK markedly decrease TNF-alpha-stimulated DNA synthesis. Signaling mechanisms through which SphK mediated the effect of TNF-alpha on DNA synthesis were then examined. Inhibition of Rho proteins with C3 exoenzyme or of Rho kinase with Y27632 attenuated TNF-alpha-stimulated DNA synthesis. However, RhoA activation by TNF-alpha was not blocked by SphK inhibition. ERK activation was also required for TNF-alpha-stimulated DNA synthesis but likewise TNF-alpha-induced ERK activation was not blocked by inhibition of SphK. Thus, neither RhoA nor ERK activation are the SphK-dependent transducers of TNF-alpha-induced proliferation. In contrast, TNF-alpha-stimulated Akt phosphorylation, which was also required for DNA synthesis, was attenuated by SphK inhibition or SphK1 knockdown by small interfering RNA. Furthermore, cyclin D expression was increased by TNF-alpha in a SphK- and Akt-dependent manner. Additional studies demonstrated that TNF-alpha effects on DNA synthesis, ERK, and Akt phosphorylation are not mediated through cell surface Gi -coupled S1P receptors, because none of these responses were inhibited by pertussis toxin. We conclude that SphK-dependent Akt activation plays a significant role in TNF-alpha-induced cyclin D expression and cell proliferation.

    Topics: Brain Neoplasms; Cell Division; Cell Line, Tumor; Cyclin D; Cyclins; DNA; Enzyme Activation; Glioblastoma; Humans; Phosphotransferases (Alcohol Group Acceptor); Proto-Oncogene Proteins c-akt; Receptors, Cell Surface; Receptors, Lysosphingolipid; rho GTP-Binding Proteins; RNA, Small Interfering; Signal Transduction; Tumor Necrosis Factor-alpha

2007
Sphingosine-1-phosphate is released by cerebellar astrocytes in response to bFGF and induces astrocyte proliferation through Gi-protein-coupled receptors.
    Glia, 2006, Apr-15, Volume: 53, Issue:6

    The mitogenic role of sphingosine-1-phosphate (S1P) and its involvement in basic fibroblast growth factor (bFGF)-induced proliferation were examined in primary cultures of cerebellar astrocytes. Exposure to bFGF resulted in a rapid increase of extracellular S1P formation, bFGF inducing astrocytes to release S1P, but not sphingosine kinase, in the extracellular milieu. The SK inhibitor N,N-dimethylsphingosine inhibited S1P release as well as bFGF-induced growth stimulation. S1P application in quiescent astrocytes caused a dose-dependent increase in DNA synthesis. This gliotrophic effect was induced by a brief exposure to low nanomolar S1P, mimicked by the S1P receptor agonist dihydro-S1P, and inhibited by pertussis toxin (PTX), an inactivator of G(i)/G(o)-proteins. S1P also induced activation of extracellular signal-regulated kinase that was inhibited again by PTX. Moreover, the S1P lyase inhibitor 4-deoxypyridoxine induced the cellular accumulation of S1P but did not affect DNA synthesis. These results support the view that S1P exerted a mitogenic effect on cerebellar astrocytes extracellularly, most likely through cell surface S1P receptors. In agreement, mRNAs for S1P1, S1P2, and S1P3 receptors are expressed in cerebellar astrocytes (Anelli et al., 2005. J Neurochem 92:1204-1215). Ceramide, a negative regulator of astrocyte proliferation and down-regulated by bFGF (Riboni et al., 2002. Cerebellum 1:129-135), efficiently inhibited S1P-induced proliferation. The S1P action appears to be part of an autocrine/paracrine cascade stimulated by bFGF and, together with ceramide down-regulation, essential for astrocytes to respond to bFGF. The results suggest that S1P and bFGF/S1P may play an important role in physiopathological glial proliferation, such as brain development, reactive gliosis and brain tumor formation.

    Topics: Animals; Animals, Newborn; Astrocytes; Astrocytoma; Brain Neoplasms; Cell Proliferation; Cell Transformation, Neoplastic; Cells, Cultured; Ceramides; Cerebellum; DNA Replication; Enzyme Inhibitors; Extracellular Fluid; Extracellular Signal-Regulated MAP Kinases; Fibroblast Growth Factor 2; Gliosis; GTP-Binding Protein alpha Subunits, Gi-Go; Lysophospholipids; Mitosis; Phosphotransferases (Alcohol Group Acceptor); Rats; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine

2006