sphingosine-kinase and Brain-Edema

sphingosine-kinase has been researched along with Brain-Edema* in 3 studies

Other Studies

3 other study(ies) available for sphingosine-kinase and Brain-Edema

ArticleYear
Isoflurane delays the development of early brain injury after subarachnoid hemorrhage through sphingosine-related pathway activation in mice.
    Critical care medicine, 2012, Volume: 40, Issue:6

    Isoflurane, a volatile anesthetic agent, has been recognized for its potential neuroprotective properties and has antiapoptotic effects. We examined whether isoflurane posttreatment is protective against early brain injury after subarachnoid hemorrhage and determined whether this effect needs sphingosine-related pathway activation.. Controlled in vivo laboratory study.. Animal research laboratory.. One hundred seventy-nine 8-wk-old male CD-1 mice weighing 30-38 g.. Subarachnoid hemorrhage was induced in mice by endovascular perforation. Animals were randomly assigned to sham-operated, subarachnoid hemorrhage-vehicle, and subarachnoid hemorrhage+2% isoflurane. Neurobehavioral function and brain edema were evaluated at 24 and 72 hrs. The expression of sphingosine kinase, phosphorylated Akt, and cleaved caspase-3 was determined by Western blotting and immunofluorescence. Neuronal cell death was examined by terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling staining. Effects of a sphingosine kinase inhibitor N, N-dimethylsphingosine or a sphingosine 1 phosphate receptor inhibitor VPC23019 on isoflurane's protective action against postsubarachnoid hemorrhage early brain injury were also examined.. Isoflurane significantly improved neurobehavioral function and brain edema at 24 hrs but not 72 hrs after subarachnoid hemorrhage. At 24 hrs, isoflurane attenuated neuronal cell death in the cortex, associated with an increase in sphingosine kinase 1 and phosphorylated Akt, and a decrease in cleaved caspase-3. The beneficial effects of isoflurane were abolished by N, N-dimethylsphingosine and VPC23019.. Isoflurane posttreatment delays the development of postsubarachnoid hemorrhage early brain injury through antiapoptotic mechanisms including sphingosine-related pathway activation, implying its use for anesthesia during acute aneurysm surgery or intervention.

    Topics: Animals; Apoptosis; Brain Edema; Brain Injuries; Isoflurane; Lysophospholipids; Male; Mice; Neuroprotective Agents; Phosphotransferases (Alcohol Group Acceptor); Random Allocation; Signal Transduction; Sphingosine; Subarachnoid Hemorrhage

2012
Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice.
    Stroke, 2012, Volume: 43, Issue:9

    We examined effects of isoflurane, volatile anesthetics, on blood-brain barrier disruption in the endovascular perforation model of subarachnoid hemorrhage (SAH) in mice.. Animals were assigned to sham-operated, SAH+vehicle-air, SAH+1%, or 2% isoflurane groups. Neurobehavioral function, brain water content, Evans blue dye extravasation, and Western blotting for sphingosine kinases, occludin, claudin-5, junctional adhesion molecule, and vascular endothelial cadherin were evaluated at 24 hours post-SAH. Effects of sphingosine kinase (N,N-dimethylsphingosine) or sphingosine-1-phosphate receptor-1/3 (S1P1/3) inhibitors (VPC23019) on isoflurane's action were also examined.. SAH aggravated neurological scores, brain edema, and blood-brain barrier permeability, which were prevented by 2% but not 1% isoflurane posttreatment. Two percent isoflurane increased sphingosine kinase-1 expression and prevented a post-SAH decrease in expressions of the blood-brain barrier-related proteins. Both N,N-dimethylsphingosine and VPC23019 abolished the beneficial effects of isoflurane.. Two percent isoflurane can suppress post-SAH blood-brain barrier disruption, which may be mediated by sphingosine kinase 1 expression and sphingosine-1-phosphate receptor-1/3 activation.

    Topics: Anesthetics, Inhalation; Animals; Biomarkers; Blood-Brain Barrier; Blotting, Western; Brain Edema; Coloring Agents; Evans Blue; Functional Laterality; Isoflurane; Male; Mice; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid; Subarachnoid Hemorrhage

2012
Hypoxic preconditioning-induced cerebral ischemic tolerance: role of microvascular sphingosine kinase 2.
    Stroke, 2009, Volume: 40, Issue:10

    The importance of bioactive lipid signaling under physiological and pathophysiological conditions is progressively becoming recognized. The disparate distribution of sphingosine kinase (SphK) isoform activity in normal and ischemic brain, particularly the large excess of SphK2 in cerebral microvascular endothelial cells, suggests potentially unique cell- and region-specific signaling by its product sphingosine-1-phosphate. The present study sought to test the isoform-specific role of SphK as a trigger of hypoxic preconditioning (HPC)-induced ischemic tolerance.. Temporal changes in microvascular SphK activity and expression were measured after HPC. The SphK inhibitor dimethylsphingosine or sphingosine analog FTY720 was administered to adult male Swiss-Webster ND4 mice before HPC. Two days later, mice underwent a 60-minute transient middle cerebral artery occlusion and at 24 hours of reperfusion, infarct volume, neurological deficit, and hemispheric edema were measured.. HPC rapidly increased microvascular SphK2 protein expression (1.7+/-0.2-fold) and activity (2.5+/-0.6-fold), peaking at 2 hours, whereas SphK1 was unchanged. SphK inhibition during HPC abrogated reductions in infarct volume, neurological deficit, and ipsilateral edema in HPC-treated mice. FTY720 given 48 hours before stroke also promoted ischemic tolerance; when combined with HPC, even greater (and dimethylsphingosine-reversible) protection was noted.. These findings indicate hypoxia-sensitive increases in SphK2 activity may serve as a proximal trigger that ultimately leads to sphingosine-1-phosphate-mediated alterations in gene expression that promote the ischemia-tolerant phenotype. Thus, components of this bioactive lipid signaling pathway may be suitable therapeutic targets for protecting the neurovascular unit in stroke.

    Topics: Animals; Arterioles; Brain Edema; Cerebral Arteries; Cerebrovascular Circulation; Disease Models, Animal; Fingolimod Hydrochloride; Hypoxia-Ischemia, Brain; Immunosuppressive Agents; Infarction, Middle Cerebral Artery; Ischemic Preconditioning; Lysophospholipids; Male; Mice; Microcirculation; Phosphotransferases (Alcohol Group Acceptor); Propylene Glycols; Reperfusion Injury; RNA, Messenger; Sphingosine

2009