sphingosine-kinase has been researched along with Bone-Neoplasms* in 3 studies
3 other study(ies) available for sphingosine-kinase and Bone-Neoplasms
Article | Year |
---|---|
Sphingosine kinase 1 contributes to doxorubicin resistance and glycolysis in osteosarcoma.
Osteosarcoma (OS) is one of the most common and aggressive malignancies in children and adolescents worldwide. Sphingosine kinase 1 (SphK1) has recently been reported to serve a role in OS progression. The present study aimed to investigate the role of SphK1 in the development of chemoresistance and glycolysis in OS cell lines. SphK1 expression levels in OS cell lines (U2OS, MG63 and SaoS2) were analyzed using western blotting and reverse transcription‑quantitative PCR (RT‑qPCR). A cell survival assay was conducted to determine doxorubicin‑resistance in OS cells, and glycolysis was also evaluated. SphK1 expression was increased in the U2OS and SaoS2 cell lines, and both cell lines were more resistant to doxorubicin when compared with the MG63 cell line. SphK1 knockdown or overexpression altered doxorubicin resistance and the viability of OS cell lines. In addition, hypoxia inducible factor‑1α (HIF‑1α) expression was positively associated with SphK1 expression, and partly mediated SphK1‑induced effects on doxorubicin resistance and glycolysis. The present study suggested that SphK1 participated in the development of doxorubicin resistance and contributed to glycolysis in OS cells by regulating HIF‑1α expression. However, further studies investigating the application of SphK1 associated therapies for patients with OS are required. Topics: Bone Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Survival; Doxorubicin; Gene Expression Regulation, Neoplastic; Glycolysis; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Osteosarcoma; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction | 2020 |
MicroRNA-506-3p initiates mesenchymal-to-epithelial transition and suppresses autophagy in osteosarcoma cells by directly targeting SPHK1.
Osteosarcoma (OS) is the most common malignant bone tumor. In cancer cells, autophagy is related to epithelial-to-mesenchymal transition (EMT). Although microRNA (miR)-506-3p has been demonstrated to act as a tumor suppressor in OS, its role in regulating the EMT process and autophagy remains unknown. The results showed that miR-506-3p directly inhibited the expression of sphingosine kinase 1 (SPHK1) in 143B and SaOS-2 cells. The invasive capability of OS cells was reduced following miR-506-3p mimics transfection, and restored when SPHK1 was overexpressed simultaneously. Further, miR-506-3p mimics initiated mesenchymal-to-epithelial transition (MET) - E-cadherin expression was upregulated, whilst vimentin and fibronectin were downregulated. The basal autophagy flux (LC3II/I) was suppressed by miR-506-3p mimics. The alterations induced by miR-506-3p mimics were partly reversed by SPHK1 overexpression or treatment of rapamycin. Meanwhile, treatment of SPHK1-transfected cells with 3-methyladenine inhibited EMT. The data suggest that miR-506-3p initiates MET and suppresses autophagy in OS cells by targeting SPHK1. Topics: Autophagy; Bone Neoplasms; Cadherins; Cell Line, Tumor; Down-Regulation; Epithelial-Mesenchymal Transition; Fibronectins; Humans; MicroRNAs; Osteosarcoma; Phosphotransferases (Alcohol Group Acceptor); Up-Regulation; Vimentin | 2019 |
Furowanin A Exhibits Antiproliferative and Pro-Apoptotic Activities by Targeting Sphingosine Kinase 1 in Osteosarcoma.
Osteosarcoma (OS) is one of the most common malignant bone tumors among children and young adults. Furowanin A (Fur A), one of the active ingredients of Millettia pachycarpa Benth, has been found to exert pro-apoptotic activity in human leukemia cells. This study is designed to evaluate the efficacy of Fur A against OS. The effect of Fur A on cell viability was assessed by Cell Counting Kit-8 (CCK-8) assay. Western blotting and quantitative real-time PCR (qRT-PCR) were performed to determine the protein and mRNA level of sphingosine kinase 1 (SphK1), respectively. To validate the role of SphK1 in the pro-apoptotic activity of Fur A, overexpressing SphK1 vector and siRNA targeting SphK1 were utilized to transfect OS cells. Moreover, an OS xenograft murine model was used to analyze the therapeutic efficacy of Fur A in vivo. Fur A treatment led to a dose-dependent decrease in the number of viable cells. It also exhibited antiproliferative activity and significantly promoted apoptotic cell death in OS cell lines. Our results showed that the anticancer activity of Fur A was associated with downregulation of SphK1 and inactivation of its downstream signaling. The mediatory role of SphK1 was validated when the pro-apoptotic activity of Fur A was significantly blocked by SphK1 overexpression, while SphK1 knockdown sensitized the OS cells to Fur A. We concluded that Fur A can exhibit anti-growth and pro-apoptotic activities in vitro and in vivo in OS by downregulating SphK1. Our study highlights the possibility of utilizing Fur A as a chemotherapeutic agent in the treatment of OS. Anat Rec, 302:1941-1949, 2019. © 2019 American Association for Anatomy. Topics: Animals; Apoptosis; Bone Neoplasms; Cell Proliferation; Female; Flavonoids; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Humans; Mice; Mice, Inbred BALB C; Mice, Nude; Osteosarcoma; Phosphotransferases (Alcohol Group Acceptor); Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2019 |