sphingosine-kinase has been researched along with Arthritis--Rheumatoid* in 13 studies
4 review(s) available for sphingosine-kinase and Arthritis--Rheumatoid
Article | Year |
---|---|
Implication of sphingosine-1-phosphate signaling in diseases: molecular mechanism and therapeutic strategies.
Sphingosine-1-phosphate signaling is emerging as a critical regulator of cellular processes that is initiated by the intracellular production of bioactive lipid molecule, sphingosine-1-phosphate. Binding of sphingosine-1-phosphate to its extracellular receptors activates diverse downstream signaling that play a critical role in governing physiological processes. Increasing evidence suggests that this signaling pathway often gets impaired during pathophysiological and diseased conditions and hence manipulation of this signaling pathway may be beneficial in providing treatment. In this review, we summarized the recent findings of S1P signaling pathway and the versatile role of the participating candidates in context with several disease conditions. Finally, we discussed its possible role as a novel drug target in different diseases. Topics: Arthritis, Rheumatoid; Ceramidases; Diabetes Mellitus; Humans; Lysophospholipids; Molecular Targeted Therapy; Multiple Sclerosis; Neoplasms; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Sphingosine | 2017 |
Sphingosine kinase and sphingosine-1-phosphate receptors: novel therapeutic targets of rheumatoid arthritis?
Rheumatoid arthritis (RA) is a chronic, destructive, autoimmune joint disease characterized by elevated levels of proinflammatory cytokine production. Sphingosine kinase (SphK) phosphorylates sphingosine into sphingosine-1-phosphate. Synovial fluid of RA patients exhibits significantly higher levels of S1P than their non-inflammatory osteoarthritis counterparts. SphK blockade suppresses cytokines and MMP-9 release in RA peripheral blood mononuclear cells. In addition, downregulation of SphK1 either through a specific siRNA approach or transgenic human TNF-α SphK1-deficient mice (hTNF-α/SphK1(-/-)) exhibit significantly less synovial inflammation and joint pathology. By contrast, SphK2 modulation leads to disease exacerbation. These results clearly demonstrate that such anti- and proinflammatory potential of SphK1/2 modulation may alter the outcome in RA synovitis and raises the possibility that drugs that specifically target SphK1 activity may play a beneficial role in the treatment of RA and other autoimmune rheumatic diseases. Topics: Animals; Antirheumatic Agents; Arthritis, Rheumatoid; Cytokines; Humans; Molecular Targeted Therapy; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid | 2012 |
Sphingosine-1-phosphate: a potential therapeutic target for rheumatoid arthritis.
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease, which has as its primary target, the synovial tissues and articular cartilage. The current pharmacological treatment of RA includes non-steroidal anti-inflammatory drugs, corticosteroids, and disease-modifying anti-rheumatic drugs. Newer biological agents that work by inactivation of proinflammatory cytokines are available for treatment of RA. Sphingosine-1-phosphate (S1P) is a bioactive lipid that is generated from phosphorylation of sphingosine by activation of sphingosine kinase, and has been implicated as an important mediator in pathophysiological processes, including cell growth, differentiation, migration and survival, and angiogenesis. Several studies have explored the role of S1P in the pathogenesis of RA. The aim of this article was to review the biology and distribution of S1P, together with its role in RA, and to discuss its potential as a therapeutic target for RA. Topics: Animals; Arthritis, Rheumatoid; Humans; Lysophospholipids; Molecular Targeted Therapy; Phosphotransferases (Alcohol Group Acceptor); Sphingosine | 2011 |
Regulation of macrophage function by sphingosine-1-phosphate.
The bioactive lipid sphingosine-1-phosphate (S1P) fulfils manifold tasks in the immune system acting in auto- and/or paracrine fashion. This includes regulation of apoptosis, migration and proliferation. Upon its generation by sphingosine kinases from plasma membrane sphingolipids, S1P can either act as a second messenger within cells or can be released from cells to occupy a family of specific G-protein-coupled receptors (S1P1-5). This diversity is reflected by the impact of S1P on macrophage biology and function. Over the last years it became apparent that the sphingosine kinase/S1P/S1P-receptor signalling axis in macrophages might play a central role in the pathogenesis of inflammatory diseases such as atherosclerosis, asthma, rheumatoid arthritis and cancer. Here, we summarize the current knowledge of the function of S1P in macrophage biology and discuss potential implications for pathology. Topics: Animals; Arthritis, Rheumatoid; Asthma; Atherosclerosis; Humans; Inflammation; Lysophospholipids; Macrophage Activation; Macrophages; Neoplasms; Phosphotransferases (Alcohol Group Acceptor); Receptors, G-Protein-Coupled; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine | 2009 |
9 other study(ies) available for sphingosine-kinase and Arthritis--Rheumatoid
Article | Year |
---|---|
Geniposide alleviates VEGF-induced angiogenesis by inhibiting VEGFR2/PKC/ERK1/2-mediated SphK1 translocation.
Rheumatoid arthritis (RA) is an angiogenesis-dependent disease caused by the imbalance of pro- and anti-angiogenic factors. More effective strategies to block synovial angiogenesis in RA should be studied. Geniposide (GE), a natural product isolated from the fruit of Gardenia jasminoides Ellis (GJ), is reported to have anti-inflammatory, anti-angiogenic and other pharmacological effects. However, the underlying mechanism through which GE affects synovial angiogenesis in RA remains unclear.. In this research, we aimed to elucidate the effect and potential mechanisms of GE on angiogenesis in RA.. Synovial angiogenesis in patients with RA and a rat model of adjuvant arthritis (AA) was detected by hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), and western blottiing. The biological functions of vascular endothelial cells (VECs) and sphingosine kinase 1 (SphK1) translocation were checked by CCK-8, EdU, Transwell, tube formation, co-immunoprecipitation assays, and laser scanning confocal microscopy. The effect of the SphK1 gene on angiogenesis was assessed by transfection of SphK1-siRNA in cells and mices. The effect of GE on VEGF-induced angiogenesis was measured by Matrigel plug assay in a mouse model of AA.. GE effectively inhibited synovial angiogenesis and alleviated the disease process. SphK1, as a new regulatory molecule, has a potentially important relationship in regulating VEGF/VEGFR2 and S1P/S1PR1 signals. SphK1 translocation was activated via the VEGFR2/PKC/ERK1/2 pathway and was closely linked to the biological function of VECs. GE significantly reduced SphK1 translocation, thereby ameliorating the abnormal biological function of VECs. Furthermore, after transfection of SphK1 siRNA in VECs and C57BL/6 mice, silencing SphK1 caused effectively attenuation of VEGF-induced VEC biological functions and angiogenesis. In vivo, the Matrigel plug experiment indicated that GE significantly inhibited pericyte coverage, basement membrane formation, vascular permeability, and fibrinogen deposition.. Our findings suggest that GE inhibited VEGF-induced VEC biological functions and angiogenesis by reducing SphK1 translocation. Generally, studies have revealed that GE down-regulated VEGFR2/PKC/ERK1/2-mediated SphK1 translocation and inhibited S1P/S1PR1 signaling activation, thereby alleviating VEGF-stimulated angiogenesis. The above evidences indicated that angiogenesis inhibition may provide a new direction for RA treatment. Topics: Animals; Arthritis, Experimental; Arthritis, Rheumatoid; Endothelial Cells; Humans; Iridoids; MAP Kinase Signaling System; Mice; Mice, Inbred C57BL; Neovascularization, Pathologic; Phosphotransferases (Alcohol Group Acceptor); Rats; RNA, Small Interfering; Vascular Endothelial Growth Factor A | 2022 |
Geniposide inhibits SphK1 membrane targeting to restore macrophage polarization balance in collagen-induced arthritis mice.
Imbalance of macrophage polarization plays a critical role in the progression of rheumatoid arthritis (RA). Geniposide (GE) has been shown to exert anti-inflammatory effects. However, the effect of GE on macrophage polarization remains unclear. Here, we investigated the regulation of GE on the imbalance of macrophage polarization in RA and how it functions. We established a mouse model of collagen-induced arthritis (CIA) and isolated bone marrow-derived macrophages (BMDMs). The results confirmed that pro-inflammatory M1 macrophages were dominant in CIA mice, but the polarization imbalance of macrophages was restored to a certain extent after GE treatment. Furthermore, the membrane targeting of sphingosine kinase 1 (SphK1) was increased in BMDMs of CIA mice, as manifested by increased membrane and cytoplasmic expression of p-SphK1 and high secretion level of sphingosine-1-phosphate (S1P). RAW264.7 cells were stimulated with lipopolysaccharide (LPS)-interferon (IFN)-γ or interleukin (IL)-4 to induce M1 or M2 phenotype, respectively, to revalidate the results obtained in BMDMs. The results again observed SphK1 membrane targeting in LPS-IFN-γ-stimulated RAW264.7 cells. Selective inhibition of SphK1 by PF543 or inhibition of the S1P receptors by FTY720 both restored the proportion of M1 and M2 macrophages in LPS-IFN-γ-stimulated RAW264.7 cells, confirming that SphK1 membrane targeting mediated a proportional imbalance in M1 and M2 macrophage polarization. In addition, GE inhibited SphK1 membrane targeting and kinase activity. Taken together, results confirmed that the inhibition of SphK1 membrane targeting by GE was responsible for restoring the polarization balance of macrophages in CIA mice. Topics: Animals; Anti-Inflammatory Agents; Arthritis, Experimental; Arthritis, Rheumatoid; Fingolimod Hydrochloride; Interferon-gamma; Iridoids; Lipopolysaccharides; Macrophages; Mice; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction | 2022 |
Evaluation of pyrrolidine-based analog of jaspine B as potential SphK1 inhibitors against rheumatoid arthritis.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovitise, and its pathogenesis is complicated. Sphingosine-1-phosphate (S1P) is a lipid produced by sphingosine kinase 1 and 2 (SphK1/2), which participate in some of most-spread skeletal diseases such as rheumatoid arthritis or osteoarthritis. To explore the anti-inflammatory activity of 2-epi-jaspine B analogs as SphKs inhibitors, we used LPS-induced rheumatoid arthritis fibroblast-like synovial cells (HFLS-RA) as the research object to evaluate the anti-inflammatory activity of 16 2-epi-jaspine B analogs and the newly synthesized salt CHJ01. We found that 2-epi-jaspine B analog CHJ01 in hydrochloride salt form has excellent SphK1 inhibitory effect and better anti-RA effect. CHJ01 showed an anti-inflammatory effect similar to that of MTX in vitro, its IC Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Arthritis, Rheumatoid; Dose-Response Relationship, Drug; Enzyme Inhibitors; Freund's Adjuvant; Molecular Structure; Phosphotransferases (Alcohol Group Acceptor); Pyrrolidines; Rats; Sphingosine; Structure-Activity Relationship | 2021 |
Knockdown of sphingosine kinase 1 inhibits the migration and invasion of human rheumatoid arthritis fibroblast-like synoviocytes by down-regulating the PI3K/AKT activation and MMP-2/9 production in vitro.
To investigate the potential regulation of sphingosine kinase 1 (SPHK1) on the migration, invasion, and matrix metalloproteinase (MMP) expression in human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). RA-FLS were transfected control siRNA or SPHK1 siRNA. The migration and invasion of unmanipulated control, control siRNA or SPHK1 siRNA- transfected RA-FLS in vitro were measured by the transwell system. The relative levels of SPHK1, PI3K, and AKT as well as AKT phosphorylation in RA-FLS were determined by Western blot. The levels of MMP-2/9 secreted by RA-FLS were detected by ELISA. Knockdown of SPHK1 significantly inhibited the spontaneous migration and invasion of RA-FLS, accompanied by significantly reduced levels of PI3K expression and AKT phosphorylation. Similarly, treatment with LY294002, an inhibitor of the PI3K/AKT pathway, inhibited the migration and invasion of RA-FLS. Knockdown of SPHK1 and treatment with the inhibitor synergistically inhibited the migration and invasion of RA-FLS, by further reducing the levels of PI3K expression and AKT phosphorylation. In addition, knockdown of SPHK1 or treatment with LY294002 inhibited the secretion of MMP-2 and MMP-9, and both synergistically reduced the production of MMP-2 and MMP-9 in RA-FLS in vitro. Knockdown of SPHK1 expression inhibits the PI3K/AKT activation, MMP-2 and MMP-9 expression, and human RA-FLS migration and invasion in vitro. Potentially, SPHK1 may be a novel therapeutic target for RA. Topics: Arthritis, Rheumatoid; Cell Movement; Cells, Cultured; Chromones; Down-Regulation; Female; Fibroblasts; Gene Knockdown Techniques; Humans; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Middle Aged; Morpholines; Phosphatidylinositol 3-Kinases; Phosphorylation; Phosphotransferases (Alcohol Group Acceptor); Proto-Oncogene Proteins c-akt; RNA, Small Interfering; Synovial Membrane | 2014 |
Chronic increases in sphingosine kinase-1 activity induce a pro-inflammatory, pro-angiogenic phenotype in endothelial cells.
Sphingosine kinase-1 (SK1) promotes the formation of sphingosine-1-phosphate (S1P), which has potent pro-inflammatory and pro-angiogenic effects. We investigated the effects of raised SK1 levels on endothelial cell function and the possibility that this signaling pathway is activated in rheumatoid arthritis. Human umbilical vein endothelial cells with 3- to 5-fold SK1 (EC(SK)) overexpression were generated by adenoviral and retroviralmediated gene delivery. The activation state of these cells and their ability to undergo angiogenesis was determined. S1P was measured in synovial fluid from patients with RA and OA. EC(SK) showed an enhanced migratory capacity and a stimulated rate of capillary tube formation. The cells showed constitutive activation as evidenced by the induction of basal VCAM-1 expression, and further showed a more augmented VCAM-1 and E selectin response to TNF compared with empty vector control cells (EC(EV)). These changes had functional consequences in terms of enhanced neutrophil binding in the basal and TNFstimulated states in EC(SK). By contrast, over-expression of a dominant-negative SK inhibited the TNF-induced VCAM-1 and E selectin and inhibited PMN adhesion, confirming that the observed effects were specifically mediated by SK. The synovial fluid levels of S1P were significantly higher in patients with RA than in those with OA. Small chronic increases in SK1 activity in the endothelial cells enhance the ability of the cells to support inflammation and undergo angiogenesis, and sensitize the cells to inflammatory cytokines. The SK1 signaling pathway is activated in RA, suggesting that manipulation of SK1 activity in diseases of aberrant inflammation and angiogenesis may be beneficial. Topics: Arthritis, Rheumatoid; Cell Adhesion; Cell Movement; Chronic Disease; E-Selectin; Endothelial Cells; Endothelium, Vascular; Humans; Lysophospholipids; Neovascularization, Physiologic; Osteoarthritis; Phenotype; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Sphingosine; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1 | 2009 |
Expression of sphingosine kinase 2 in synovial fibroblasts of rheumatoid arthritis contributing to apoptosis by a sphingosine analogue, FTY720.
Gene expression profiles in synovial tissues from rheumatoid arthritis (RA) patients have yielded useful information on the pathogenetic process of the synovitis. In one group of them, sphingosine kinase 2 (SPHK2), a nuclear protein regulating cell proliferation, seemed to be highly expressed, undergoing a different pathogenetic process of synovitis. In the present study it was clarified that SPHK2 was expressed in the synovial fibroblasts of the synovial tissues obtained from the knee joints of the RA patients. In the cultured synovial fibroblasts from these patients, SPHK2 was more highly expressed than that in the human macrophage cell line, THP-1 and human dermal fibroblasts. SPHK2 was expressed in and around the nucleus and transferred to the cytoplasm and cell surface by the administration of epidermal growth factor, associated with the increased expression of sphingosine-1-phosphate. A sphingosine analogue, FTY720, which is activated by phosphorylation specifically by SPHK2, mediated apoptotic signaling of the cultured synovial fibroblasts. These findings suggest that SPHK2 may regulate the autonomous proliferation of synovial fibroblasts as one of the predisposing genes to RA and could be a target for a novel therapeutic strategy for RA. Topics: Apoptosis; Arthritis, Rheumatoid; Blotting, Western; Cells, Cultured; Fibroblasts; Fingolimod Hydrochloride; Fluorescent Antibody Technique; Humans; Immunosuppressive Agents; In Situ Nick-End Labeling; Microscopy, Confocal; Phosphotransferases (Alcohol Group Acceptor); Propylene Glycols; Reverse Transcriptase Polymerase Chain Reaction; Sphingosine; Synovial Membrane | 2009 |
Anti-inflammatory effects of sphingosine kinase modulation in inflammatory arthritis.
Sphingosine kinase (SphK) is a key enzyme in the sphingolipid metabolic pathway responsible for phosphorylating sphingosine into sphingosine-1-phosphate (S1P). SphK/S1P play a critical role in angiogenesis, inflammation, and various pathologic conditions. Recently, S1P(1) receptor was found to be expressed in rheumatoid arthritis (RA) synovium, and S1P signaling via S1P(1) enhances synoviocyte proliferation, COX-2 expression, and prostaglandin E(2) production. Here, we examined the role of SphK/S1P in RA using a potent SphK inhibitor, N,N-dimethylsphingosine (DMS), and a molecular approach against one of its isoenzymes, SphK1. We observed that levels of S1P in the synovial fluid of RA patients were significantly higher than those of osteoarthritis patients. Additionally, DMS significantly reduced the levels of TNF-alpha, IL-6, IL-1beta, MCP-1, and MMP-9 in cell-contact assays using both Jurkat-U937 cells and RA PBMCs. In a murine collagen-induced arthritis model, i.p. administration of DMS significantly inhibited disease severity and reduced articular inflammation and joint destruction. Treatment of DMS also down-regulated serum levels IL-6, TNF-alpha, IFN-gamma, S1P, and IgG1 and IgG2a anti-collagen Ab. Furthermore, DMS-treated mice also displayed suppressed proinflammatory cytokine production in response to type II collagen in vitro. Moreover, similar reduction in incidence and disease activity was observed in mice treated with SphK1 knock-down via small interfering RNA approach. Together, these results demonstrate SphK modulation may provide a novel approach in treating chronic autoimmune conditions such as RA by inhibiting the release of pro-inflammatory cytokines. Topics: Animals; Arthritis, Rheumatoid; Cell Proliferation; Collagen Type II; Cyclooxygenase 2; Cytokines; Disease Models, Animal; Enzyme Inhibitors; Gene Expression Regulation; Humans; Inflammation; Inflammation Mediators; Jurkat Cells; Leukocytes, Mononuclear; Lysophospholipids; Matrix Metalloproteinase 9; Mice; Mice, Inbred DBA; Neovascularization, Physiologic; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid; RNA, Small Interfering; Signal Transduction; Sphingosine; Synovial Fluid; U937 Cells | 2008 |
Aberrant Gi protein coupled receptor-mediated cell survival signaling in rheumatoid arthritis B cell lines.
Sphingosine 1-phosphate (S1P) is a pleiotropic bioactive lipid that transmits potent signals through a family of G protein coupled receptors with resultant anti-apoptotic and pro-angiogenic effects. We have recently reported that lymphoblastoid B cell lines (LCLs) from rheumatoid arthritis (RA) patients are resistant to Fas-mediated cell death due to over-production of S1P, secondary to over-activity of sphingosine kinase-1 (SphK1). Here we investigated the signaling events that S1P triggers in those cells. Our results show that RA-derived LCLs display increased constitutive enzymatic activity of phosphatidylinositol 3-kinase (PI3K). Incubation of LCLs with a PI3K inhibitor wortmannin reversed PI3K over-activity and the resistance to Fas-mediated cell death. Incubation of RA LCLs with nanomolar concentration of S1P triggered exaggerated activation of both SphK and PI3K in RA LCLs compared to control cells. PI3K was mapped upstream of SphK, since wortmannin could block SphK activation by S1P. S1P signaling effect could be blocked by the Gi/G0 protein inhibitor, pertussis toxin and by an inhibitor of S1P-receptor interaction, suramin. S1P receptor expression levels did not appear to be the cause of disparate S1P-triggered signaling, since LCLs from RA patients and their healthy twin controls did not show statistically significant differences in the expression levels of the five known S1P receptors, as determined by quantitative real time reverse transcription-polymerase chain reaction analyses. Thus, we conclude that Fas death signaling aberration in RA LCLs is caused by extracellular S1P, which triggers PI3K-dependent SphK over-activity through a Gi protein-coupled receptor-mediated signaling cascade. Topics: Apoptosis; Arthritis, Rheumatoid; B-Lymphocytes; Cell Line; Cell Survival; GTP-Binding Protein alpha Subunits, Gi-Go; Humans; Lysophospholipids; Phosphatidylinositol 3-Kinases; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid; Signal Transduction; Sphingosine | 2007 |
Sphingosine kinase 1-mediated inhibition of Fas death signaling in rheumatoid arthritis B lymphoblastoid cells.
It is becoming increasingly apparent that B cells play an important role in the pathogenesis of rheumatoid arthritis (RA). Due to the scarcity of B cells in RA, it has been technically difficult to functionally characterize B cell apoptosis in this disease. As a necessary first step to identify candidate aberrations, we investigated Fas-mediated signaling events in immortalized peripheral blood B lymphoblastoid cell lines (LCLs) from patients with RA and controls.. Cell death was determined by the MTS assay, and apoptosis was detected by the TUNEL assay and DNA laddering. Proteolytic activation of caspase 3 was determined by immunoblotting, and its enzymatic activity was determined by a fluorometric technique. Messenger RNA (mRNA) expression was quantified by real-time polymerase chain reaction (PCR) analysis. The functional role of sphingosine kinase (SPHK) was determined by measuring its enzymatic activity, by quantifying the levels of its product, sphingosine 1-phosphate (S1P), and by investigating the ability of the SPHK inhibitor N,N-dimethylsphingosine and isozyme-specific small interfering RNA (siRNA) oligonucleotides to reverse signaling aberrations.. LCLs from patients with RA displayed disease-specific Fas-mediated signal transduction impairment with consequent resistance to cell death. RA LCLs displayed high constitutive SPHK activity and increased levels of S1P. Real-time PCR analysis showed higher SPHK-1 mRNA expression levels in RA patients compared with paired controls. Increased SPHK-1 (but not SPHK-2) mRNA levels were observed in synovial tissue from RA patients. Competitive inhibitors of SPHK reversed the resistance of RA LCLs to Fas-induced apoptosis. Additionally, resistance to Fas-mediated signaling was reversed by siRNA oligonucleotides specific for SPHK-1 but not by oligonucleotides specific for SPHK-2.. These findings demonstrate disease-specific resistance to Fas-mediated death signaling in patients with RA and implicate increased SPHK-1 activity as the cause of this aberration. Topics: Adaptor Proteins, Signal Transducing; Adult; Aged; Apoptosis; Arthritis, Rheumatoid; B-Lymphocytes; Caspase 3; Caspases; Cell Death; Enzyme Activation; fas Receptor; Female; Humans; In Situ Nick-End Labeling; Male; Middle Aged; Phosphotransferases (Alcohol Group Acceptor); Polymerase Chain Reaction; RNA, Messenger; Signal Transduction | 2006 |