sphingosine-1-phosphate has been researched along with Thyroid-Neoplasms* in 7 studies
7 other study(ies) available for sphingosine-1-phosphate and Thyroid-Neoplasms
Article | Year |
---|---|
FTY720 (Fingolimod) attenuates basal and sphingosine-1-phosphate-evoked thyroid cancer cell invasion.
The bioactive lipid sphingosine-1-phosphate (S1P) is a potent inducer of ML-1 thyroid cancer cell migration and invasion. It evokes migration and invasion by activating S1P receptor 1 and 3 (S1P1,3) and downstream signaling intermediates as well as through cross-communication with vascular endothelial growth factor receptor 2 (VEGFR2). However, very little is known about the role of S1P receptors in thyroid cancer. Furthermore, the currently used treatments for thyroid cancer have proven to be rather unsuccessful. Thus, due to the insufficiency of the available treatments for thyroid cancer, novel and targeted therapies are needed. The S1P receptor functional antagonist FTY720, an immunosuppressive drug currently used for treatment of multiple sclerosis, has shown promising effects as an inhibitor of cancer cell proliferation and invasion. In this study, we investigated the effect of FTY720 on invasion and proliferation of several thyroid cancer cell lines. We present evidence that FTY720 attenuated basal as well as S1P-evoked invasion of these cell lines. Furthermore, FTY720 potently downregulated S1P1, protein kinase Cα(PKCα), PKCβI, and VEGFR2. It also attenuated S1P-evoked phosphorylation of ERK1/2. Our results also showed that FTY720 attenuated S1P-induced MMP2 intracellular expression, S1P-induced secretion of MMP2 and MMP9, and decreased basal MMP2 and MMP9 activity. Moreover, in FTY720-treated cells, proliferation was attenuated, p21 and p27 were upregulated, and the cells were arrested in the G1 phase of the cell cycle. FTY720 attenuated cancer cell proliferation in the chick embryo chorioallantoic membrane assay. Thus, we suggest that FTY720 could be beneficial in the treatment of thyroid cancer. Topics: Animals; Antineoplastic Agents; Cell Line; Cell Line, Tumor; Cell Movement; Chick Embryo; Chorioallantoic Membrane; Fingolimod Hydrochloride; Humans; Immunosuppressive Agents; Lysophospholipids; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Sphingosine; Thyroid Neoplasms | 2016 |
MMP2 and MMP9 participate in S1P-induced invasion of follicular ML-1 thyroid cancer cells.
The bioactive lipid sphingosine-1-phosphate (S1P) has emerged as a potent inducer of cancer cell migration and invasion. Previously, we have shown that S1P induces invasion of ML-1 follicular thyroid cancer cells via S1P receptors 1 and 3 (S1P1,3). Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic enzymes used by cells for degradation of the extracellular matrix during invasion and migration. In the present study, we examined the role of MMP2 and MMP9 for S1P-induced invasion of ML-1 cells, and found that S1P regulates the secretion and activity of MMP2 and MMP9 via S1P1,3. Both pharmacological inhibitors and siRNA knockdown of MMP2 and MMP9 could attenuate S1P-induced invasion. Additionally, we show that calpains and Rac1 mediate S1P-induced secretion of MMP2 and MMP9. In conclusion, MMP2 and MMP9 participate in S1P-evoked follicular ML-1 thyroid cancer cell invasion. Topics: Adenocarcinoma, Follicular; Calpain; Cell Line, Tumor; Cell Movement; Humans; Lysophospholipids; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; rac1 GTP-Binding Protein; Sphingosine; Thyroid Neoplasms | 2015 |
Sphingosine-1-phosphate induces the migration of thyroid follicular carcinoma cells through the microRNA-17/PTK6/ERK1/2 pathway.
Sphingosine-1-phosphate (S1P) is a bioactive lipid known to play a role in tumorigenesis and cancer progression. However, the molecular mechanisms of S1P regulated migration of papillary thyroid cancer cells are still unknown. In this study, we showed that S1P induced PTK6 mRNA and protein expression in two thyroid follicular cancer cell lines (ML-1 and FTC-133). Further studies demonstrated that induced PTK6 and its downstream signal component (ERK1/2) are involved in S1P-induced migration. Upon investigating the mechanisms behind this event, we found that miR-17 inhibited the expression of PTK6 through direct binding to its 3'-UTR. Through overexpression and knockdown studies, we found that miR-17 can significantly inhibit S1P-induced migration in thyroid follicular cancer cells. Interestingly, overexpression or knockdown of PTK6 or ERK1/2 effectively removed the inhibition of S1P-induced migration by miR-17. Furthermore, we showed that S1P decreased miR-17 expression levels. Meanwhile, in papillary thyroid cancers, miR-17 is downregulated and negatively associated with clinical staging, whereas PTK6 is upregulated and positively associated with clinical stages. Collectively, our work defines a novel signaling pathway implicated in the control of thyroid cancer migration. Topics: Cell Line, Tumor; Cell Movement; Female; Humans; Lysophospholipids; Male; MAP Kinase Signaling System; MicroRNAs; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Neoplasm Proteins; Protein-Tyrosine Kinases; RNA, Neoplasm; Sphingosine; Thyroid Neoplasms | 2015 |
Sphingosine 1-phosphate and human ether-a'-go-go-related gene potassium channels modulate migration in human anaplastic thyroid cancer cells.
Anaplastic thyroid cancer (ATC) is the most aggressive form of human thyroid cancer, lacking any effective treatment. Sphingosine 1-phosphate (S1P) receptors and human ether-a'-go-go-related gene (HERG (KCNH2)) potassium channels are important modulators of cell migration. In this study, we have shown that the S1P(1-3) receptors are expressed in C643 and THJ-16T human ATC cell lines, both at mRNA and protein level. S1P inhibited migration of these cells and of follicular FTC-133 thyroid cancer cells. Using the S1P(1,3) inhibitor VPC-23019, the S1P(2) inhibitor JTE-013, and the S1P(2) receptor siRNA, we showed that the effect was mediated through S1P(2). Treatment of the cells with the Rho inhibitor C3 transferase abolished the effect of S1P on migration. S1P attenuated Rac activity, and inhibiting Rac decreased migration. Sphingosine kinase inhibitor enhanced basal migration of cells, and addition of exogenous S1P inhibited migration. C643 cells expressed a nonconducting HERG protein, and S1P decreased HERG protein expression. The HERG blocker E-4031 decreased migration. Interestingly, downregulating HERG protein with siRNA decreased the basal migration. In experiments using HEK cells overexpressing HERG, we showed that S1P decreased channel protein expression and current and that S1P attenuated migration of the cells. We conclude that S1P attenuates migration of C643 ATC cells by activating S1P(2) and the Rho pathway. The attenuated migration is also, in part, dependent on a S1P-induced decrease of HERG protein. Topics: Cell Line, Tumor; Cell Movement; Cell Proliferation; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; HEK293 Cells; Humans; Lysophospholipids; Receptors, Lysosphingolipid; RNA, Messenger; Sphingosine; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms | 2012 |
S1P1 and VEGFR-2 form a signaling complex with extracellularly regulated kinase 1/2 and protein kinase C-alpha regulating ML-1 thyroid carcinoma cell migration.
Sphingosine 1-phosphate (S1P) and vascular endothelial growth factor receptor 2 (VEGFR-2) signaling have been shown to integrate in many biological processes. The follicular thyroid carcinoma cell line ML-1 expresses VEGFR-2 and secretes substantial amounts of both vascular endothelial growth factor (VEGF)-A and VEGF-C. ML-1 cells also express S1P-receptors (S1P(1-3,5)). S1P is able to phosphorylate VEGFR-2, and inhibiting VEGFR-2 attenuates S1P-induced migration and down-regulates S1P(1) expression in ML-1 cells. In the present study, we focused on the interactions between S1P(1) and VEGFR-2. We show that S1P receptors form complexes with VEGFR-2 and that the S1P(1)/VEGFR-2 complex associates with protein kinase C (PKC)-alpha and ERK1/2. Furthermore, the complex evokes bidirectional signaling since the S1P-induced ERK1/2 phosphorylation is sensitive to VEGFR-2 kinase inhibition and VEGF-A-induced ERK1/2 phosphorylation is sensitive to pertussis toxin treatment as well as S1P(1) small interfering RNA (siRNA) treatment. Both S1P- and VEGF-A-induced haptotaxis is sensitive to pertussis toxin treatment and S1P(1) siRNA treatment. Phosphorylation of ERK1/2 evoked by both VEGF-A and the S1P(1) agonist SEW-2871 is inhibited by PKC-alpha and PKC-betaI siRNA. We hypothesize that VEGFR-2 forms a signaling complex with S1P(1), evoking bidirectional signaling regulating both ERK1/2 phosphorylation and haptotaxis of ML-1 cells. Topics: Blotting, Western; Cell Line, Tumor; Cell Movement; Humans; Immunohistochemistry; Immunoprecipitation; Lysophospholipids; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Phosphorylation; Protein Binding; Protein Kinase C-alpha; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Thyroid Neoplasms; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-2 | 2010 |
Sphingosine kinase as an oncogene: autocrine sphingosine 1-phosphate modulates ML-1 thyroid carcinoma cell migration by a mechanism dependent on protein kinase C-alpha and ERK1/2.
Sphingosine 1-phosphate (S1P) induces migration of the human thyroid follicular carcinoma cell line ML-1 by activation of S1P(1) and S1P(3) receptors, G(i) proteins, and the phosphatidylinositol 3-kinase-Akt pathway. Because sphingosine kinase isoform 1 (SK) recently has been implicated as an oncogene in various cancer cell systems, we investigated the functions of SK in the migration, proliferation and adhesion of the ML-1 cell line. SK overexpressing ML-1 cells show an enhanced secretion of S1P, which can be attenuated, by inhibiting SK activity and a multidrug-resistant transport protein (ATP-binding cassette transporter). Furthermore, overexpression of SK enhances serum-induced migration of ML-1 cells, which can be attenuated by blocking ATP-binding cassette transporter and SK, suggesting that the migration is mediated by autocrine signaling through secretion of S1P. Inhibition of protein kinase C alpha, with both small interfering RNA (siRNA) and small molecular inhibitors attenuates migration in SK overexpressing cells. In addition, SK-overexpressing cells show an impaired adhesion, slower cell growth, and an up-regulation of ERK1/2 phosphorylation, as compared with cells expressing a dominant-negative SK. Taken together, we present evidence suggesting that SK enhances migration of ML-1 cells by an autocrine mechanism and that the S1P-evoked migration is dependent on protein kinase C alpha, ERK1/2, and SK. Topics: Autocrine Communication; Carcinoma; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cells, Cultured; Humans; Lysophospholipids; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Neoplasm Invasiveness; Oncogenes; Phosphorylation; Phosphotransferases (Alcohol Group Acceptor); Protein Kinase C-alpha; RNA, Small Interfering; Sphingosine; Thyroid Neoplasms; Transfection | 2009 |
Interactions between sphingosine-1-phosphate and vascular endothelial growth factor signalling in ML-1 follicular thyroid carcinoma cells.
Sphingosine-1-phosphate (S1P) induces migration of human ML-1 thyroid follicular cancer cells and inhibits migration of human FRO anaplastic thyroid cancer cells. As tumour cells often secrete vascular endothelial growth factor (VEGF), we investigated a possible interaction between S1P and VEGF signalling in the regulation of thyroid tumour cell migration. We found that both ML-1 and FRO cells secreted VEGF-A ( approximately 3.6 and <0.1 ng/10(6) cells/day respectively) and VEGF-C ( approximately 3.0 and 0.14 ng/10(6) cells/day respectively). S1P stimulated VEGF-A secretion in both cell lines, and blocking S1P receptors 1, 2 and 3 attenuated the S1P-evoked secretion of VEGF-A. Neither TSH nor insulin affected the amount of secreted VEGF-A or -C in ML-1 cells, while simultaneous stimulation with insulin and S1P increased VEGF-C secretion in FRO cells. Both cell lines expressed VEGF receptor 2 (VEGFR-2) mRNA and proteins. Serum-evoked migration of both ML-1 and FRO cells was attenuated when VEGFR-2 was inhibited. Moreover, inhibiting VEGFR-2 in ML-1 cells resulted in a rapid downregulation of S1P1 mRNA expression and S1P1 protein levels, suppression of S1P-induced migration and a decrease in S1P-induced Akt phosphorylation. A VEGF-neutralizing antibody also reduced S1P-induced migration. In ML-1 cells, S1P phosphorylated VEGFR-2. In addition, VEGFR-2 inhibition resulted in the upregulation of S1P3 mRNA within 24 h, but a significant increase in S1P3 protein levels was not observed. VEGFR-2 inhibition, but not a VEGF-neutralizing antibody, reduced ML-1 cell proliferation independently of S1P stimulation. The results indicate a complex interaction between S1P and VEGFR-2 in ML-1 cells, particularly in regulating migratory responses. Topics: Adenocarcinoma, Follicular; Cell Division; Cell Line, Tumor; Cell Movement; Gene Expression Regulation, Neoplastic; Humans; Lysophospholipids; Neovascularization, Pathologic; Phosphorylation; Proto-Oncogene Proteins c-akt; Receptors, Lysosphingolipid; RNA, Messenger; Signal Transduction; Sphingosine; Thyroid Neoplasms; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor C; Vascular Endothelial Growth Factor Receptor-2 | 2008 |