sphingosine-1-phosphate has been researched along with Spinal-Cord-Injuries* in 4 studies
4 other study(ies) available for sphingosine-1-phosphate and Spinal-Cord-Injuries
Article | Year |
---|---|
Spinal Stroke: Outcome Attenuation by Erythropoietin and Carbamylated Erythropoietin and Its Prediction by Sphingosine-1-Phosphate Serum Levels in Mice.
Spinal strokes may be associated with tremendous spinal cord injury. Erythropoietin (EPO) improves the neurological outcome of animals after spinal cord ischemia (SCI) and its effects on ischemia-induced endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are considered possible molecular mechanisms. Furthermore, sphingosin-1-phosphate (S1P) is suggested to correlate with SCI. In this study, the effect of recombinant human EPO (rhEPO) and carbamylated EPO (cEPO-Fc) on the outcome of mice after SCI and a prognostic value of S1P were investigated. SCI was induced in 12-month-old male mice by thoracic aortal cross-clamping after administration of rhEPO, cEPO-Fc, or a control. The locomotory behavior of mice was evaluated by the Basso mouse scale and S1P serum levels were measured by liquid chromatography-tandem mass spectrometry. The spinal cord was examined histologically and the expressions of key UPR proteins (ATF6, PERK, and IRE1a, caspase-12) were analyzed utilizing immunohistochemistry and real-time quantitative polymerase chain reaction. RhEPO and cEPO-Fc significantly improved outcomes after SCI. The expression of caspase-12 significantly increased in the control group within the first 24 h of reperfusion. Animals with better locomotory behavior had significantly higher serum levels of S1P. Our data indicate that rhEPO and cEPO-Fc have protective effects on the clinical outcome and neuronal tissue of mice after SCI and that the ER is involved in the molecular mechanisms. Moreover, serum S1P may predict the severity of impairment after SCI. Topics: Animals; Caspase 12; Epoetin Alfa; Erythropoietin; Humans; Infant; Lysophospholipids; Male; Mice; Neuroprotective Agents; Recombinant Proteins; Sphingosine; Spinal Cord Injuries; Spinal Cord Ischemia; Stroke | 2022 |
S1P/S1PR3 signaling mediated proliferation of pericytes via Ras/pERK pathway and CAY10444 had beneficial effects on spinal cord injury.
Pericytes have long been regarded merely to maintain structural and functional integrity of blood-brain barrier (BBB). Nevertheless, it has also been identified as a component of scar-forming stromal cells after spinal cord injury (SCI). In process of enlargement of spinal cavity after SCI, the number of pericytes increased and outnumbered astrocytes. However, the mechanism of proliferation of pericytes remains unclear. Sphingosine-1-phosphate (S1P) has been reported to play important roles in the formation of glia scar, but previous studies had paid more attention to the astrocytes. The present study aimed to observe the effects of S1P and S1P receptors (S1PRs) on proliferation of pericytes and investigate the underlying mechanism. By double immunostaining, we found that the number of PDGFRβ-positive pericytes was gradually increased and sealed the cavity, which surrounded by reactive astrocytes. Moreover, the subtype of S1PR3 was found to be induced by SCI and mainly expressed on pericytes. Further, by use of CAY10444, an inhibitor of S1PR3, we showed that S1P/S1PR3 mediated the proliferation of pericytes through Ras/pERK pathway. Moreover, CAY10444 was found to have the effects of enhancing neuronal survival, alleviating glial scar formation, and improving locomotion recovery after SCI. The results suggested that S1P/S1PR3 might be a promising target for clinical therapy for SCI. Topics: Animals; Cell Proliferation; Locomotion; Lysophospholipids; MAP Kinase Signaling System; Pericytes; ras Proteins; Rats, Sprague-Dawley; Receptors, Lysosphingolipid; Recovery of Function; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Spinal Cord Injuries; Thiazolidines | 2018 |
Local delivery of FTY720 in PCL membrane improves SCI functional recovery by reducing reactive astrogliosis.
FTY720 has recently been approved as an oral drug for treating relapsing forms of multiple sclerosis, and exerts its therapeutic effect by acting as an immunological inhibitor targeting the sphingosine-1-phosphate (S1P) receptor subtype (S1P1) of T cells. Recently studies demonstrated positive efficacy of this drug on spinal cord injury (SCI) in animal models after systemic administration, albeit with significant adverse side effects. We hereby hypothesize that localized delivery of FTY720 can promote SCI recovery by reducing pathological astrogliosis. The mechanistic functions of FTY720 were investigated in vitro and in vivo utilizing immunofluorescence, histology, MRI and behavioral analysis. The in vitro study showed that FTY720 can reduce astrocyte migration and proliferation activated by S1P. FTY720 can prolong internalization of S1P1 and exert antagonistic effects on S1P1. In vivo study of SCI animal models demonstrated that local delivery of FTY720 with polycaprolactone (PCL) membrane significantly decreased S1P1 expression and glial scarring compared with the control group. Furthermore, FTY720-treated groups exhibited less cavitation volume and neuron loss, which significantly improved recovery of motor function. These findings demonstrated that localized delivery of FTY720 can promote SCI recovery by targeting the S1P1 receptor of astrocytes, provide a new therapeutic strategy for SCI treatment. Topics: Administration, Topical; Animals; Delayed-Action Preparations; Fingolimod Hydrochloride; Gliosis; Immunosuppressive Agents; Lysophospholipids; Male; Membranes, Artificial; Polyesters; Rats; Rats, Sprague-Dawley; Recovery of Function; Sphingosine; Spinal Cord Injuries; Treatment Outcome | 2015 |
Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury.
Neural stem/progenitor cells (NSPCs) migrate toward a damaged area of the central nervous system (CNS) for the purpose of limiting and/or repairing the damage. Although this migratory property of NSPCs could theoretically be exploited for cell-based therapeutics of CNS diseases, little is known of the mechanisms responsible for migratory responses of NSPCs. Here, we found that sphingosine 1-phosphate (Sph-1-P), a physiological lysophospholipid mediator, had a potent chemoattractant activity for NSPCs, in which, of Sph-1-P receptors, S1P(1) was abundantly expressed. Sph-1-P-induced NSPC migration was inhibited by the pretreatment with pertussis toxin, Y-27632 (a Rho kinase inhibitor), and VPC23019 (a competitive inhibitor of S1P(1) and S1P(3)). Sph-1-P does not act as intracellular mediator or in an autocrine manner, because [(3)H]sphingosine, incorporated into NSPCs, was mainly converted to ceramide and sphingomyeline intracellularly, and the stimulation-dependent formation and extracellular release of Sph-1-P were not observed. Further, Sph-1-P concentration in the spinal cord was significantly increased at 7 days after a contusion injury, due to accumulation of microglia and reactive astrocytes in the injured area. This locally increased Sph-1-P concentration contributed to the migration of in vivo transplanted NSPCs through its receptor S1P(1), given that lentiviral transduction of NSPCs with a short hairpin RNA interference for S1P(1) abolished in vivo NSPC migration toward the injured area. This is the first report to identify a physiological role for a lipid mediator in NSPC migration toward a pathological area of the CNS and further indicates that the Sph-1-P/S1P(1) pathway may have therapeutic potential for CNS injuries. Topics: Animals; Cell Culture Techniques; Cell Movement; Lysophospholipids; Neurons; Prosencephalon; Rats; Receptors, Lysosphingolipid; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sphingosine; Spinal Cord Injuries; Stem Cell Transplantation | 2007 |