sphingosine-1-phosphate has been researched along with Pulmonary-Disease--Chronic-Obstructive* in 8 studies
1 review(s) available for sphingosine-1-phosphate and Pulmonary-Disease--Chronic-Obstructive
Article | Year |
---|---|
Iron and Sphingolipids as Common Players of (Mal)Adaptation to Hypoxia in Pulmonary Diseases.
Hypoxia, or lack of oxygen, can occur in both physiological (high altitude) and pathological conditions (respiratory diseases). In this narrative review, we introduce high altitude pulmonary edema (HAPE), acute respiratory distress syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD), and Cystic Fibrosis (CF) as examples of maladaptation to hypoxia, and highlight some of the potential mechanisms influencing the prognosis of the affected patients. Among the specific pathways modulated in response to hypoxia, iron metabolism has been widely explored in recent years. Recent evidence emphasizes hepcidin as highly involved in the compensatory response to hypoxia in healthy subjects. A less investigated field in the adaptation to hypoxia is the sphingolipid (SPL) metabolism, especially through Ceramide and sphingosine 1 phosphate. Both individually and in concert, iron and SPL are active players of the (mal)adaptation to physiological hypoxia, which can result in the pathological HAPE. Our aim is to identify some pathways and/or markers involved in the physiological adaptation to low atmospheric pressures (high altitudes) that could be involved in pathological adaptation to hypoxia as it occurs in pulmonary inflammatory diseases. Hepcidin, Cer, S1P, and their interplay in hypoxia are raising growing interest both as prognostic factors and therapeutical targets. Topics: Adaptation, Physiological; Altitude Sickness; Ceramides; Cystic Fibrosis; Hepcidins; Humans; Hypertension, Pulmonary; Hypoxia; Iron; Lysophospholipids; Pulmonary Disease, Chronic Obstructive; Respiratory Distress Syndrome; Sphingolipids; Sphingosine | 2020 |
7 other study(ies) available for sphingosine-1-phosphate and Pulmonary-Disease--Chronic-Obstructive
Article | Year |
---|---|
Associations among S100A4, Sphingosine-1-Phosphate, and Pulmonary Function in Patients with Chronic Obstructive Pulmonary Disease.
S100A4 is a member of the S100 calcium-binding protein family and is increased in patients with chronic obstructive pulmonary disease (COPD). Sphingosine-1-phosphate (S1P) is a naturally occurring bioactive sphingolipid, which regulates the adhesion between the cells and the extracellular matrix and affects cell migration and differentiation. The goal of this study was to analyze the correlations among S100A4, S1P, and pulmonary function among COPD patients.. All 139 serum samples and 15 lung specimens were collected in COPD patients and control subjects. S100A4 and S1P were detected in two groups. The markers of fibrosis and epithelial-mesenchymal transition (EMT) were measured in the lungs of COPD patients and control subjects.. The protein expression of S100A4 was higher in the lungs and serum of COPD patients than control cases. Additionally, serum S100A4 was inversely associated with pulmonary function among COPD patients. Meanwhile, collagen deposition and EMT nuclear transcription factors were elevated in the lungs of COPD patients. Moreover, the protein expression of S1P was increased in the serum of COPD patients. Serum S1P was gradually increased along with pulmonary function decline in COPD patients. Further correlation analysis revealed that serum S1P was negatively associated with pulmonary function in COPD patients. Furthermore, there was a positive correlation between S1P and S100A4 in COPD patients.. These results provide evidence that the elevation of S100A4 and S1P may be involved in the onset and progression of COPD. Topics: Aged; Epithelial-Mesenchymal Transition; Female; Humans; Lysophospholipids; Male; Pulmonary Disease, Chronic Obstructive; Respiratory Function Tests; S100 Calcium-Binding Protein A4; Sphingosine | 2022 |
Sphingosine-1-phosphate and CRP as potential combination biomarkers in discrimination of COPD with community-acquired pneumonia and acute exacerbation of COPD.
Chronic obstructive pulmonary disease (COPD) is a significant public health concern. The patients with acute exacerbations of COPD (AECOPD) and pneumonia have similar clinical presentations. The use of conventional diagnostic markers, such as complete blood count with differential and C-reactive protein (CRP), is the current mainstream method for differentiating clinically relevant pneumonia from other mimics. However, those conventional methods have suboptimal sensitivity and specificity for patients with a clinical suspicion of infection. The limitations often cause the ambiguity of the initiation of antibiotic treatment. Recently, our pilot study suggested that the patients with pneumonia have significantly higher plasma Sphingosine-1-phosphate (S1P) levels than controls. The initial findings suggest that plasma S1P is a potential biomarker for predicting prognosis in pneumonia. The aim of this study was to evaluate the value of S1P and CRP for discriminating COPD with pneumonia and AECOPD in an Emergency Department (ED) setting.. Patients diagnosed with AECOPD or COPD with pneumonia were recruited from the Emergency Department of Wan Fang Hospital. The clinical data, demographics, and blood samples were collected upon ED admission. The concentration of plasma S1P was measured by ELISA.. Thirty-nine patients with AECOPD and 78 with COPD plus pneumonia were enrolled in this observational study. The levels of blood S1P and CRP were significantly higher in patients with COPD plus CAP compared to those in AE COPD patients. The area under the receiver operator characteristic (ROC) curve for the S1P and CRP for distinguishing between patients with COPD plus CAP and AECOPD is 0.939 (95% CI: 0.894-0.984) and 0.886 (95% CI: 0.826-0.945), whereas the combination of S1P and CRP yielded a value of 0.994 (95% CI: 0.897-1.000). By comparing with CRP or S1P, combining CRP and S1P had significantly higher AUC value for differentiating between the COPD with pneumonia group and the AECOPD group.. Our findings suggest that S1P is a potential diagnostic biomarker in distinguishing COPD with CAP from AECOPD. Additionally, the diagnostic ability of S1P can be improved when used in combination with CRP. Topics: Aged; Biomarkers; C-Reactive Protein; Community-Acquired Infections; Diagnosis, Differential; Female; Humans; Lysophospholipids; Male; Pneumonia; Prospective Studies; Pulmonary Disease, Chronic Obstructive; Sphingosine | 2022 |
Functional contribution of sphingosine-1-phosphate to airway pathology in cigarette smoke-exposed mice.
A critical role for sphingosine kinase/sphingosine-1-phosphate (S1P) pathway in the control of airway function has been demonstrated in respiratory diseases. Here, we address S1P contribution in a mouse model of mild chronic obstructive pulmonary disease (COPD).. C57BL/6J mice have been exposed to room air or cigarette smoke up to 11 months and killed at different time points. Functional and molecular studies have been performed.. Cigarette smoke caused emphysematous changes throughout the lung parenchyma coupled to a progressive collagen deposition in both peribronchiolar and peribronchial areas. The high and low airways showed an increased reactivity to cholinergic stimulation and α-smooth muscle actin overexpression. Similarly, an increase in airway reactivity and lung resistances following S1P challenge occurred in smoking mice. A high expression of S1P, Sph-K. S1P signalling up-regulation follows the disease progression in smoking mice and is involved in the development of airway hyperresponsiveness. Our study defines a therapeutic potential for S1P inhibitors in management of airways hyperresponsiveness associated to emphysema in smokers with both asthma and COPD. Topics: Actins; Airway Remodeling; Animals; Bronchial Hyperreactivity; Bronchoconstriction; Cigarette Smoking; Collagen; Disease Models, Animal; Lung; Lysophospholipids; Mice, Inbred C57BL; Phosphotransferases (Alcohol Group Acceptor); Pulmonary Disease, Chronic Obstructive; Pulmonary Emphysema; Signal Transduction; Smoke; Sphingosine; Sphingosine-1-Phosphate Receptors; Time Factors; Tobacco Products | 2020 |
Disrupted epithelial/macrophage crosstalk via Spinster homologue 2-mediated S1P signaling may drive defective macrophage phagocytic function in COPD.
We have previously established a link between impaired phagocytic capacity and deregulated S1P signaling in alveolar macrophages from COPD subjects. We hypothesize that this defect may include a disruption of epithelial-macrophage crosstalk via Spns2-mediated intercellular S1P signaling.. Primary alveolar macrophages and bronchial epithelial cells from COPD subjects and controls, cell lines, and a mouse model of chronic cigarette smoke exposure were studied. Cells were exposed to 10% cigarette smoke extract, or vehicle control. Spns2 expression and subcellular localization was studied by immunofluorescence, confocal microscopy and RT-PCR. Phagocytosis was assessed by flow-cytometry. Levels of intra- and extracellular S1P were measured by S1P [3H]-labeling.. Spns2 expression was significantly increased (p<0.05) in alveolar macrophages from current-smokers/COPD patients (n = 5) compared to healthy nonsmokers (n = 8) and non-smoker lung transplant patients (n = 4). Consistent with this finding, cigarette smoke induced a significant increase in Spns2 expression in both human alveolar and THP-1 macrophages. In contrast, a remarkable Spns2 down-regulation was noted in response to cigarette smoke in 16HBE14o- cell line (p<0.001 in 3 experiments), primary nasal epithelial cells (p<0.01 in 2 experiments), and in smoke-exposed mice (p<0.001, n = 6 animals per group). Spns2 was localized to cilia in primary bronchial epithelial cells. In both macrophage and epithelial cell types, Spns2 was also found localized to cytoplasm and the nucleus, in line with a predicted bipartile Nuclear Localization Signal at the position aa282 of the human Spns2 sequence. In smoke-exposed mice, alveolar macrophage phagocytic function positively correlated with Spns2 protein expression in bronchial epithelial cells.. Our data suggest that the epithelium may be the major source for extracellular S1P in the airway and that there is a possible disruption of epithelial/macrophage cross talk via Spns2-mediated S1P signaling in COPD and in response to cigarette smoke exposure. Topics: Animals; Anion Transport Proteins; Case-Control Studies; Cells, Cultured; Cigarette Smoking; Disease Models, Animal; Epithelial Cells; Humans; Lysophospholipids; Macrophages, Alveolar; Mice; Phagocytosis; Pulmonary Disease, Chronic Obstructive; Signal Transduction; Sphingosine; Subcellular Fractions | 2017 |
Reduced DNA methylation of sphingosine-1 phosphate receptor 5 in alveolar macrophages in COPD: A potential link to failed efferocytosis.
We previously showed that alveolar macrophages from COPD patients are defective in their ability to phagocytose apoptotic cells ('efferocytosis') and that this defect is potentially linked to the sphingosine-1 phosphate (S1P) system, in particular the sphingosine-1 phosphate receptor 5 (S1PR5). In alveolar macrophages from COPD patients, S1PR5 mRNA expression levels increased and were correlated with both lung function and efferocytosis. However, it us unknown whether these changes are under epigenetic control via DNA methylation or whether DNA methylation directly modulates macrophage function.. Bisulfite sequencing was used to assess DNA methylation levels at CpG islands associated with genes encoding selected S1P system components, including sphingosine kinase 1 (SPHK1), S1PR1 and S1PR5, in alveolar macrophages from 20 COPD patients, 7 healthy smokers and 10 healthy non/ex-smokers) by methyl quantitative real-time PCR (methyl qPCR). The effect of the DNA methyltransferase inhibitor, 5-azacytidine on the efferocytosis capacity of THP-1 macrophages was assessed using flow cytometry.. Among the S1P system genes examined, S1PR5 was the single target that showed significant changes in DNA methylation between patient groups. Alveolar macrophages isolated from COPD patients showed lower methylation levels in the same region compared to macrophages from non/ex-smokers. in vitro studies using THP-1 macrophages showed that DNA demethylation with 5-azacytidine increased the efferocytosis capacity and dose-dependently rescued the cells from the cigarette smoke-induced defect in efferocytosis.. Macrophage function can be modulated epigenetically. Reduced methylation may underlie the increased expression of the S1PR5 gene in alveolar macrophages and associated defective efferocytosis in COPD. Topics: Adult; Aged; Azacitidine; DNA Methylation; DNA Modification Methylases; Enzyme Inhibitors; Epigenomics; Female; Flow Cytometry; Humans; Lysophospholipids; Macrophages, Alveolar; Middle Aged; Phagocytosis; Pulmonary Disease, Chronic Obstructive; Receptors, Lysosphingolipid; Sphingosine | 2017 |
Cigarette smoke inhibits efferocytosis via deregulation of sphingosine kinase signaling: reversal with exogenous S1P and the S1P analogue FTY720.
Alveolar macrophages from chronic obstructive pulmonary disease patients and cigarette smokers are deficient in their ability to phagocytose apoptotic bronchial epithelial cells (efferocytosis). We hypothesized that the defect is mediated via inhibition of sphingosine kinases and/or their subcellular mislocalization in response to cigarette smoke and can be normalized with exogenous sphingosine-1-phosphate or FTY720 (fingolimod), a modulator of sphingosine-1-phosphate signaling, which has been shown to be clinically useful in multiple sclerosis. Measurement of sphingosine kinase 1/2 activities by [(32)P]-labeled sphingosine-1-phosphate revealed a 30% reduction of sphingosine kinase 1 (P < 0.05) and a nonsignificant decrease of sphingosine kinase 2 in THP-1 macrophages after 1 h cigarette smoke extract exposure. By confocal analysis macrophage sphingosine kinase 1 protein was normally localized to the plasma membrane and cytoplasm and sphingosine kinase 2 to the nucleus and cytoplasm but absent at the cell surface. Cigarette smoke extract exposure (24 h) led to a retraction of sphingosine kinase 1 from the plasma membrane and sphingosine kinase 1/2 clumping in the Golgi domain. Selective inhibition of sphingosine kinase 2 with 25 µM ABC294640 led to 36% inhibition of efferocytosis (P < 0.05); 10 µM sphingosine kinase inhibitor/5C (sphingosine kinase 1-selective inhibitor) induced a nonsignificant inhibition of efferocytosis, but its combination with ABC294640 led to 56% inhibition (P < 0.01 vs. control and < 0.05 vs. single inhibitors). Cigarette smoke-inhibited efferocytosis was significantly (P < 0.05) reversed to near-control levels in the presence of 10-100 nM exogenous sphingosine-1-phosphate or FTY720, and FTY720 reduced cigarette smoke-induced clumping of sphingosine kinase 1/2 in the Golgi domain. These data strongly support a role of sphingosine kinase 1/2 in efferocytosis and as novel therapeutic targets in chronic obstructive pulmonary disease. Topics: Bronchi; Cells, Cultured; Epithelial Cells; Fingolimod Hydrochloride; Gene Expression Regulation, Enzymologic; Humans; Immunosuppressive Agents; Lysophospholipids; Macrophages, Alveolar; Phagocytosis; Phosphorylation; Phosphotransferases (Alcohol Group Acceptor); Pulmonary Disease, Chronic Obstructive; Signal Transduction; Smoking; Sphingosine | 2016 |
Potential Link between the Sphingosine-1-Phosphate (S1P) System and Defective Alveolar Macrophage Phagocytic Function in Chronic Obstructive Pulmonary Disease (COPD).
We previously reported that alveolar macrophages from patients with chronic obstructive pulmonary disease (COPD) are defective in their ability to phagocytose apoptotic cells, with a similar defect in response to cigarette smoke. The exact mechanisms for this defect are unknown. Sphingolipids including ceramide, sphingosine and sphingosine-1-phosphate (S1P) are involved in diverse cellular processes and we hypothesised that a comprehensive analysis of this system in alveolar macrophages in COPD may help to delineate the reasons for defective phagocytic function.. We compared mRNA expression of sphingosine kinases (SPHK1/2), S1P receptors (S1PR1-5) and S1P-degrading enzymes (SGPP1, SGPP2, SGPL1) in bronchoalveolar lavage-derived alveolar macrophages from 10 healthy controls, 7 healthy smokers and 20 COPD patients (10 current- and 10 ex-smokers) using Real-Time PCR. Phagocytosis of apoptotic cells was investigated using flow cytometry. Functional associations were assessed between sphingosine signalling system components and alveolar macrophage phagocytic ability in COPD. To elucidate functional effects of increased S1PR5 on macrophage phagocytic ability, we performed the phagocytosis assay in the presence of varying concentrations of suramin, an antagonist of S1PR3 and S1PR5. The effects of cigarette smoking on the S1P system were investigated using a THP-1 macrophage cell line model.. We found significant increases in SPHK1/2 (3.4- and 2.1-fold increases respectively), S1PR2 and 5 (4.3- and 14.6-fold increases respectively), and SGPL1 (4.5-fold increase) in COPD vs. controls. S1PR5 and SGPL1 expression was unaffected by smoking status, suggesting a COPD "disease effect" rather than smoke effect per se. Significant associations were noted between S1PR5 and both lung function and phagocytosis. Cigarette smoke extract significantly increased mRNA expression of SPHK1, SPHK2, S1PR2 and S1PR5 by THP-1 macrophages, confirming the results in patient-derived macrophages. Antagonising SIPR5 significantly improved phagocytosis.. Our results suggest a potential link between the S1P signalling system and defective macrophage phagocytic function in COPD and advise therapeutic targets. Topics: Adult; Aged; Aged, 80 and over; Female; Humans; Lysophospholipids; Macrophages, Alveolar; Male; Membrane Proteins; Middle Aged; Phagocytosis; Phosphoric Monoester Hydrolases; Phosphotransferases (Alcohol Group Acceptor); Pulmonary Disease, Chronic Obstructive; Receptors, Lysosphingolipid; Smoking; Sphingosine | 2015 |