sphingosine-1-phosphate has been researched along with Osteoporotic-Fractures* in 3 studies
3 other study(ies) available for sphingosine-1-phosphate and Osteoporotic-Fractures
Article | Year |
---|---|
Association of circulating levels of total and protein-bound sphingosine 1-phosphate with osteoporotic fracture.
The biological activity and effects of circulating sphingosine 1-phosphate (S1P) might be dependent on the carrier protein. Although S1P is known to be a biomarker for osteoporotic fracture (OF), its role according to its carrier protein (high-density lipoprotein (HDL), low-density lipoprotein (LDL), or albumin) has not yet been studied. We measured the protein-bound S1P levels and bone mineral density (BMD) in 58 postmenopausal women with OF and 58 age-matched and body mass index-matched postmenopausal women without OF. Albumin-bound S1P was the most abundant. Before adjustment, women with OF had higher total S1P (p=0.046) and albumin-bound S1P (p=0.026) levels than those without OF, but there was no difference in the levels of HDL-bound or LDL-bound S1P. After adjustment for confounders including BMD, women with OF had only higher levels of total S1P than those without OF (p=0.047). Before adjustment, the OR for OF was higher in subjects in the highest quartile for total S1P (OR 5.36, 95% CI 1.22 to 23.63) or albumin-bound S1P (OR 4.48, 95% CI 1.22 to 16.42). After adjustment for confounders including BMD, statistical significance persisted only for total S1P (OR 2.23, 95% CI 1.12 to 4.81). These findings suggest that the positive association of S1P with OF is mainly due to level of total plasma S1P and not due to the differing contributions from specific carrier protein-bound fractions. Topics: Female; Humans; Lysophospholipids; Middle Aged; Odds Ratio; Osteoporotic Fractures; Protein Binding; Sphingosine | 2020 |
High Circulating Sphingosine 1-Phosphate is a Risk Factor for Osteoporotic Fracture Independent of Fracture Risk Assessment Tool.
Circulating sphingosine 1-phosphate (S1P) levels may be a biomarker for osteoporotic fracture (OF). This study assessed whether the addition of S1P levels to the fracture risk assessment tool (FRAX) could improve predictability of OF risk. Plasma S1P concentrations and FRAX variables were measured in 81 subjects with and 341 subjects without OF. S1P levels were higher in subjects with than those without OF (3.11 ± 0.13 μmol/L vs. 2.65 ± 0.61 μmol/L, P = 0.001). Higher S1P levels were associated with a higher likelihood of OF (odds ratio [OR] = 1.33, 95% confidence interval [CI] = 1.05-1.68), even after adjusting for FRAX probabilities. Compared with the lowest S1P tertile, subjects in the middle (OR = 3.37, 95% CI = 1.58-7.22) and highest (OR = 3.65, 95% CI = 1.66-8.03) S1P tertiles had higher rates of OF after adjustment. The addition of S1P levels to FRAX probabilities improved the area under the receiver-operating characteristics curve (AUC) for OF, from 0.708 to 0.769 (P = 0.013), as well as enhancing category-free net reclassification improvement (NRI = 0.504, 95% CI = 0.271-0.737, P < 0.001) and integrated discrimination improvement (IDI = 0.044, 95% CI = 0.022-0.065, P < 0.001). Adding S1P levels to FRAX probabilities especially in 222 subjects with osteopenia having a FRAX probability of 3.66-20.0% markedly improved the AUC for OF from 0.630 to 0.741 (P = 0.012), as well as significantly enhancing category-free NRI (0.571, 95% CI = 0.221-0.922, P = 0.001) and IDI (0.060, 95% CI = 0.023-0.097, P = 0.002). S1P is a consistent and significant risk factor of OF independent of FRAX, especially in subjects with osteopenia and low FRAX probability. Topics: Bone Density; Humans; Lysophospholipids; Osteoporotic Fractures; Risk Assessment; Risk Factors; Sphingosine | 2020 |
The effect of sphingosine-1-phosphate on bone metabolism in humans depends on its plasma/bone marrow gradient.
Although recent studies provide clinical evidence that sphingosine-1-phosphate (S1P) may primarily affect bone resorption in humans, rather than bone formation or the osteoclast-osteoblast coupling phenomenon, those studies could not determine which bone resorption mechanism is more important, i.e., chemorepulsion of osteoclast precursors via the blood to bone marrow S1P gradient or receptor activator of NF-κB ligand (RANKL) elevation in osteoblasts via local S1P.. To investigate how S1P mainly contributes to increased bone resorption in humans, we performed this case-control study at a clinical unit in Korea.. Blood and bone marrow samples were contemporaneously collected from 70 patients who underwent hip surgery due to either osteoporotic hip fracture (HF) (n = 10) or other causes such as osteoarthritis (n = 60).. After adjusting for sex, age, BMI, smoking, alcohol, previous fracture, diabetes, and stroke, subjects with osteoporotic HF demonstrated a 3.2-fold higher plasma/bone marrow S1P ratio than those without HF, whereas plasma and bone marrow S1P levels were not significantly different between these groups. Consistently, the risk of osteoporotic HF increased 1.38-fold per increment in the plasma/bone marrow S1P ratio in a multivariate adjustment model. However, the odds ratios for prevalent HF according to the increment in the plasma and bone marrow S1P level were not statistically significant.. Our current results using simultaneously collected blood and bone marrow samples suggest that the detrimental effects of S1P on bone metabolism in humans may depend on the S1P gradient between the peripheral blood and bone marrow cavity. Topics: Adult; Aged; Aged, 80 and over; Bone and Bones; Bone Marrow; Bone Resorption; Case-Control Studies; Female; Follow-Up Studies; Humans; Lysophospholipids; Male; Middle Aged; Osteoarthritis; Osteoporotic Fractures; Plasma; Prognosis; Retrospective Studies; Sphingosine | 2016 |