sphingosine-1-phosphate and Obesity

sphingosine-1-phosphate has been researched along with Obesity* in 26 studies

Reviews

9 review(s) available for sphingosine-1-phosphate and Obesity

ArticleYear
Sphingosine 1-phosphate metabolism and insulin signaling.
    Cellular signalling, 2021, Volume: 82

    Insulin is the main anabolic hormone secreted by β-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic β-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D.

    Topics: Adipocytes; Animals; Diabetes Mellitus, Type 2; Hepatocytes; Humans; Insulin; Insulin Resistance; Insulin-Secreting Cells; Lysophospholipids; Obesity; Sphingosine

2021
Ceramides and Sphingosino-1-Phosphate in Obesity.
    Frontiers in endocrinology, 2021, Volume: 12

    Obesity is a growing worldwide problem, especially in developed countries. This disease adversely affects the quality of life and notably contributes to the development of type 2 diabetes, metabolic syndrome, and cardiovascular disorders. It is characterised by excessive lipids accumulation in the subcutaneous and visceral adipose tissue. Considering the secretory function of adipose tissue, this leads to impaired adipokines and cytokines release. Changes in adipose tissue metabolism result in chronic inflammation, pancreatic islets dysfunction and peripheral insulin resistance. In addition to saturating various adipocytes, excess lipids are deposited into non-adipose peripheral tissues, which disturbs cell metabolism and causes a harmful effect known as lipotoxicity. Fatty acids are metabolised into bioactive lipids such as ceramides, from which sphingolipids are formed. Ceramides and sphingosine-1-phosphate (S1P) are involved in intracellular signalling, cell proliferation, migration, and apoptosis. Studies demonstrate that bioactive lipids have a crucial role in regulating insulin signalling pathways, glucose homeostasis and β cell death. Data suggests that ceramides may have an opposite cellular effect than S1P; however, the role of S1P remains controversial. This review summarises the available data on ceramide and sphingolipid metabolism and their role in obesity.

    Topics: Adipokines; Adipose Tissue; Animals; Apoptosis; Cell Movement; Cell Proliferation; Ceramides; Humans; Insulin Resistance; Lipid Metabolism; Lipids; Lysophospholipids; Muscle, Skeletal; Obesity; Quality of Life; Signal Transduction; Sphingolipids; Sphingosine

2021
The Role of Fatty Acids in Ceramide Pathways and Their Influence on Hypothalamic Regulation of Energy Balance: A Systematic Review.
    International journal of molecular sciences, 2021, May-19, Volume: 22, Issue:10

    Obesity is a global health issue for which no major effective treatments have been well established. High-fat diet consumption is closely related to the development of obesity because it negatively modulates the hypothalamic control of food intake due to metaflammation and lipotoxicity. The use of animal models, such as rodents, in conjunction with in vitro models of hypothalamic cells, can enhance the understanding of hypothalamic functions related to the control of energy balance, thereby providing knowledge about the impact of diet on the hypothalamus, in addition to targets for the development of new drugs that can be used in humans to decrease body weight. Recently, sphingolipids were described as having a lipotoxic effect in peripheral tissues and the central nervous system. Specifically, lipid overload, mainly from long-chain saturated fatty acids, such as palmitate, leads to excessive ceramide levels that can be sensed by the hypothalamus, triggering the dysregulation of energy balance control. However, no systematic review has been undertaken regarding studies of sphingolipids, particularly ceramide and sphingosine-1-phosphate (S1P), the hypothalamus, and obesity. This review confirms that ceramides are associated with hypothalamic dysfunction in response to metaflammation, endoplasmic reticulum (ER) stress, and lipotoxicity, leading to insulin/leptin resistance. However, in contrast to ceramide, S1P appears to be a central satiety factor in the hypothalamus. Thus, our work describes current evidence related to sphingolipids and their role in hypothalamic energy balance control. Hypothetically, the manipulation of sphingolipid levels could be useful in enabling clinicians to treat obesity, particularly by decreasing ceramide levels and the inflammation/endoplasmic reticulum stress induced in response to overfeeding with saturated fatty acids.

    Topics: Animals; Ceramides; Diet, High-Fat; Endoplasmic Reticulum Stress; Energy Metabolism; Fatty Acids; Humans; Hypothalamus; Insulin Resistance; Leptin; Lysophospholipids; Obesity; Signal Transduction; Sphingolipids; Sphingosine

2021
Ceramide and Sphingosine 1-Phosphate in Liver Diseases.
    Molecules and cells, 2020, May-31, Volume: 43, Issue:5

    The liver is an important organ in the regulation of glucose and lipid metabolism. It is responsible for systemic energy homeostasis. When energy need exceeds the storage capacity in the liver, fatty acids are shunted into nonoxidative sphingolipid biosynthesis, which increases the level of cellular ceramides. Accumulation of ceramides alters substrate utilization from glucose to lipids, activates triglyceride storage, and results in the development of both insulin resistance and hepatosteatosis, increasing the likelihood of major metabolic diseases. Another sphingolipid metabolite, sphingosine 1-phosphate (S1P) is a bioactive signaling molecule that acts via S1P-specific G protein coupled receptors. It regulates many cellular and physiological events. Since an increase in plasma S1P is associated with obesity, it seems reasonable that recent studies have provided evidence that S1P is linked to lipid pathophysiology, including hepatosteatosis and fibrosis. Herein, we review recent findings on ceramides and S1P in obesity-mediated liver diseases and the therapeutic potential of these sphingolipid metabolites.

    Topics: Animals; Ceramides; Homeostasis; Humans; Insulin Resistance; Lipid Metabolism; Liver; Liver Diseases; Lysophospholipids; Obesity; Sphingosine

2020
Sphingosine-1-Phosphate Metabolism in the Regulation of Obesity/Type 2 Diabetes.
    Cells, 2020, 07-13, Volume: 9, Issue:7

    Obesity is a pathophysiological condition where excess free fatty acids (FFA) target and promote the dysfunctioning of insulin sensitive tissues and of pancreatic β cells. This leads to the dysregulation of glucose homeostasis, which culminates in the onset of type 2 diabetes (T2D). FFA, which accumulate in these tissues, are metabolized as lipid derivatives such as ceramide, and the ectopic accumulation of the latter has been shown to lead to lipotoxicity. Ceramide is an active lipid that inhibits the insulin signaling pathway as well as inducing pancreatic β cell death. In mammals, ceramide is a key lipid intermediate for sphingolipid metabolism as is sphingosine-1-phosphate (S1P). S1P levels have also been associated with the development of obesity and T2D. In this review, the current knowledge on S1P metabolism in regulating insulin signaling in pancreatic β cell fate and in the regulation of feeding by the hypothalamus in the context of obesity and T2D is summarized. It demonstrates that S1P can display opposite effects on insulin sensitive tissues and pancreatic β cells, which depends on its origin or its degradation pathway.

    Topics: Animals; Diabetes Mellitus, Type 2; Energy Metabolism; Humans; Insulin; Lysophospholipids; Mammals; Obesity; Sphingosine

2020
Altered HDL metabolism in metabolic disorders: insights into the therapeutic potential of HDL.
    Clinical science (London, England : 1979), 2019, 11-15, Volume: 133, Issue:21

    Metabolic disorders are associated with an increased risk of cardiovascular disease (CVD), and are commonly characterized by a low plasma level of high-density lipoprotein cholesterol (HDL-C). Although cholesterol lowering medications reduce CVD risk in these patients, they often remain at increased risk of CVD. Therapeutic strategies that raise HDL-C levels and improve HDL function are a potential treatment option for reducing residual CVD risk in these individuals. Over the past decade, understanding of the metabolism and cardioprotective functions of HDLs has improved, with preclinical and clinical studies both indicating that the ability of HDLs to mediate reverse cholesterol transport, inhibit inflammation and reduce oxidation is impaired in metabolic disorders. These cardioprotective effects of HDLs are supported by the outcomes of epidemiological, cell and animal studies, but have not been confirmed in several recent clinical outcome trials of HDL-raising agents. Recent studies suggest that HDL function may be clinically more important than plasma levels of HDL-C. However, at least some of the cardioprotective functions of HDLs are lost in acute coronary syndrome and stable coronary artery disease patients. HDL dysfunction is also associated with metabolic abnormalities. This review is concerned with the impact of metabolic abnormalities, including dyslipidemia, obesity and Type 2 diabetes, on the metabolism and cardioprotective functions of HDLs.

    Topics: Animals; Anthropometry; Diabetes Mellitus, Type 2; Dyslipidemias; Humans; Hyperglycemia; Inflammation; Insulin Resistance; Lipoproteins, HDL; Lysophospholipids; Metabolic Syndrome; Obesity; Oxidative Stress; Sphingosine

2019
Diversity and plasticity of microglial cells in psychiatric and neurological disorders.
    Pharmacology & therapeutics, 2015, Volume: 154

    Recent advanced immunological analyses have revealed that the diversity and plasticity of macrophages lead to the identification of functional polarization states (classically activated M1 type and alternatively activated M2 type) which are dependent on the extracellular environment. M1 and M2 polarization states of macrophages play an important role in controlling the balance between pro-inflammatory and anti-inflammatory conditions. Microglial cells are resident mononuclear phagocytes in the central nervous system (CNS), express several macrophage-associated markers, and appear to display functional polarization states similar to macrophages. Like M1 macrophages, M1 polarized microglia can produce pro-inflammatory cytokines and mediators such as interleukin (IL) 1β, IL-6, tumor necrosis factor-α, CC-chemokine ligand 2, nitric oxide, and reactive oxygen species, suggesting that these molecules contribute to dysfunction of neural network in the CNS. On the other hand, M2 polarized microglia can produce anti-inflammatory cytokine, IL-10 and express several receptors that are implicated in inhibiting inflammation and restoring homeostasis. In this review, we summarize the diversity, plasticity, and immunoregulatory functions of M1 and M2 microglia in psychiatric and neurological disorders. Based on these aspects, we propose a contribution of imbalance between M1 and M2 polarization of microglia in bipolar disorder, obesity, amyotrophic lateral sclerosis, and Rett syndrome. Consequently, molecules that normalize the imbalance between M1 and M2 microglial polarization states may provide a beneficial therapeutic target for the treatment of these disorders.

    Topics: Adiponectin; Bipolar Disorder; Brain; Cytokines; Endocannabinoids; Feeding Behavior; Ghrelin; Humans; Inflammation Mediators; Lysophospholipids; Macrophages; Mental Disorders; Microglia; Nerve Net; Nervous System Diseases; Obesity; Social Behavior; Sphingosine

2015
Heart sphingolipids in health and disease.
    Advances in experimental medicine and biology, 2011, Volume: 721

    In recent years, the role of sphingolipids in physiology and pathophysiology of the heart attracted much attention. Ceramide was found to be involved in the pathogenesis of cardiac dysfunction in animal models of ischemia/reperfusion injury, Type 2 diabetes and lipotoxic cardiomyopathy. On the other hand, another member of this lipid family, namely sphingosine-1-phosphate, has been shown to possess potent cardioprotective properties. This chapter provides a review of the role of ceramide and other bioactive sphingolipids in physiology and pathophysiology of the heart. We describe the role of PPARs and exercise in regulation of myocardial sphingolipid metabolism. We also summarize the present state of knowledge on the involvement of ceramide and sphingosine-1-phosphate in the development and prevention of ischemia/reperfusion injury of the heart. In the last section of this chapter we discuss the evidence for a role of ceramide in myocardial lipotoxicity.

    Topics: Animals; Cardiomyopathies; Ceramides; Diabetes Mellitus, Type 2; Dietary Fats; Disease Models, Animal; Exercise; Heart Failure; Humans; Lysophospholipids; Mice; Myocardial Reperfusion Injury; Myocardium; Obesity; Peroxisome Proliferator-Activated Receptors; Rats; Rats, Zucker; Receptors, Lysosphingolipid; Second Messenger Systems; Sphingolipids; Sphingosine

2011
Emerging medicinal roles for lysophospholipid signaling.
    Trends in molecular medicine, 2006, Volume: 12, Issue:2

    The two lysophospholipids (LPs) lysophosphatidic acid and sphingosine 1-phosphate (S1P) regulate diverse biological processes. Over the past decade, it has become clear that medically relevant LP activities are mediated by specific G protein-coupled receptors, implicating them in the etiology of a growing number of disorders. A new class of LP agonists shows promise for drug therapy: the experimental drug FTY720 is phosphorylated in vivo to produce a potent S1P receptor agonist (FTY720-P) and is currently in Phase III clinical trials for kidney transplantation and Phase II for multiple sclerosis. Recent genetic and pharmacological studies on LP signaling in animal disease models have identified new areas in which interventions in LP signaling might provide novel therapeutic approaches for the treatment of human diseases.

    Topics: Animals; Autoimmune Diseases; Cardiovascular Diseases; Humans; Lysophospholipids; Neoplasms; Obesity; Phosphorylation; Receptors, G-Protein-Coupled; Receptors, Lysophosphatidic Acid; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Transplantation Immunology

2006

Other Studies

17 other study(ies) available for sphingosine-1-phosphate and Obesity

ArticleYear
S1PR1/S1PR3-YAP signaling and S1P-ALOX15 signaling contribute to an aggressive behavior in obesity-lymphoma.
    Journal of experimental & clinical cancer research : CR, 2023, Jan-05, Volume: 42, Issue:1

    Excess body weight has been found to associate with an increased risk of lymphomas and some metabolic pathways are currently recognized in lymphomagenesis. Bioactive lipid metabolites such as sphingosine-1-phosphate (S1P) have been proposed to play an important role linking obesity and lymphomas. However, the underlying mechanism(s) of S1P signaling in obesity-lymphomagenesis have not been well addressed.. The gene expression of sphingosine kinase (SPHK), lymphoma prognosis, and S1P production were analyzed using Gene Expression Omnibus (GEO) and human lymphoma tissue array. Obesity-lymphoma mouse models and lymphoma cell lines were used to investigate the S1P/SPHK-YAP axis contributing to obesity-lymphomagenesis. By using the mouse models and a monocyte cell line, S1P-mediated polarization of macrophages in the tumor microenvironment were investigated.. In human study, up-regulated S1P/SPHK1 was found in human lymphomas, while obesity negatively impacted progression-free survival and overall survival in lymphoma patients. In animal study, obesity-lymphoma mice showed an aggressive tumor growth pattern. Both in vivo and in vitro data suggested the existence of S1P-YAP axis in lymphoma cells, while the S1P-ALOX15 signaling mediated macrophage polarization towards TAMs exacerbated the lymphomagenesis. In addition, treatment with resveratrol in obesity-lymphoma mice showed profound effects of anti-lymphomagenesis, via down-regulating S1P-YAP axis and modulating polarization of macrophages.. S1P/S1PR initiated the feedback loops, whereby S1P-S1PR1/S1PR3-YAP signaling mediated lymphomagenesis contributing to tumor aggressive growth, while S1P-ALOX15 signaling mediated TAMs contributing to immunosuppressive microenvironment in obesity-lymphoma. S1P-targeted therapy could be potentially effective and immune-enhancive against obesity-lymphomagenesis.

    Topics: Animals; Arachidonate 12-Lipoxygenase; Arachidonate 15-Lipoxygenase; Disease Models, Animal; Humans; Mice; Neoplasms; Obesity; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Sphingosine-1-Phosphate Receptors; Tumor Microenvironment

2023
Opposing Roles of Sphingosine 1-Phosphate Receptors 1 and 2 in Fat Deposition and Glucose Tolerance in Obese Male Mice.
    Endocrinology, 2023, 01-09, Volume: 164, Issue:3

    Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that regulates fundamental cellular processes such as proliferation, migration, apoptosis, and differentiation through 5 cognate G protein-coupled receptors (S1P1-S1P5). We previously demonstrated that blockade of S1P2 signaling in S1P2-deficient mice attenuates high-fat diet-induced adipocyte hypertrophy and glucose intolerance and an S1P2-specific antagonist JTE-013 inhibits, whereas an S1P1/S1P3 dual antagonist (VPC23019) activates, adipogenic differentiation of preadipocytes. Based on those observations, this study examined whether an S1P1-specific agonist, SEW-2871, VPC23019, or their combination acts on obesity and glucose intolerance in leptin-deficient ob/ob mice. The oral administration of SEW-2871 or JTE-013 induced significant reductions in body/epididymal fat weight gains and epididymal/inguinal fat adipocyte sizes and improved glucose intolerance and adipocyte inflammation in ob/ob mice but not in their control C57BL/6J mice. Both SEW-2871 and JTE-013 decreased messenger RNA levels of tumor necrosis factor-α and CD11c, whereas they increased those of CD206 and adiponectin in the epididymal fats isolated from ob/ob mice with no changes in the levels of peroxisome proliferator activated receptor γ and its regulated genes. By contrast, VPC23019 did not cause any such alterations but counteracted with all those SEW-2871 actions in these mice. In conclusion, the S1P1 agonist SEW-2871 acted like the S1P2 antagonist JTE-013 to reduce body/epididymal fats and improve glucose tolerance in obese mice. Therefore, this study raises the possibility that endogenous S1P could promote obesity/type 2 diabetes through the S1P2, whereas exogenous S1P could act against them through the S1P1.

    Topics: Animals; Diabetes Mellitus, Type 2; Glucose; Glucose Intolerance; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Receptors, Lysosphingolipid; Sphingosine; Sphingosine-1-Phosphate Receptors

2023
Fingolimod Modulates the Gene Expression of Proteins Engaged in Inflammation and Amyloid-Beta Metabolism and Improves Exploratory and Anxiety-Like Behavior in Obese Mice.
    Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 2023, Volume: 20, Issue:5

    Obesity is considered a risk factor for type 2 diabetes mellitus, which has become one of the most important health problems, and is also linked with memory and executive function decline. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that regulates cell death/survival and the inflammatory response via its specific receptors (S1PRs). Since the role of S1P and S1PRs in obesity is rather obscure, we examined the effect of fingolimod (an S1PR modulator) on the expression profile of genes encoding S1PRs, sphingosine kinase 1 (Sphk1), proteins engaged in amyloid-beta (Aβ) generation (ADAM10, BACE1, PSEN2), GSK3β, proapoptotic Bax, and proinflammatory cytokines in the cortex and hippocampus of obese/prediabetic mouse brains. In addition, we observed behavioral changes. Our results revealed significantly elevated mRNA levels of Bace1, Psen2, Gsk3b, Sphk1, Bax, and proinflammatory cytokines, which were accompanied by downregulation of S1pr1 and sirtuin 1 in obese mice. Moreover, locomotor activity, spatially guided exploratory behavior, and object recognition were impaired. Simultaneously, fingolimod reversed alterations in the expressions of the cytokines, Bace1, Psen2, and Gsk3b that occurred in the brain, elevated S1pr3 mRNA levels, restored normal cognition-related behavior patterns, and exerted anxiolytic effects. The improvement in episodic and recognition memory observed in this animal model of obesity may suggest a beneficial effect of fingolimod on central nervous system function.

    Topics: Amyloid Precursor Protein Secretases; Animals; Anxiety; Aspartic Acid Endopeptidases; bcl-2-Associated X Protein; Cytokines; Diabetes Mellitus, Type 2; Fingolimod Hydrochloride; Gene Expression; Inflammation; Mice; Mice, Obese; Obesity; Receptors, Lysosphingolipid; RNA, Messenger

2023
S1P/S1PR3 signalling axis protects against obesity-induced metabolic dysfunction.
    Adipocyte, 2022, Volume: 11, Issue:1

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that interacts via 5 G-protein coupled receptors, S1PR1-5, to regulate signalling pathways critical to biological processes including cell growth, immune cell trafficking, and inflammation.We demonstrate that in Type 2 diabetic (T2D) subjects, plasma S1P levels significantly increased in response to the anti-diabetic drug, rosiglitazone, and, S1P levels correlated positively with measures of improved glucose homeostasis. In HFD-induced obese C57BL/6 J mice S1PR3 gene expression was increased in adipose tissues (AT) and liver compared with low fat diet (LFD)-fed counterparts. On a HFD, weight gain was similar in both S1PR3-/- mice and WT littermates; however, HFD-fed S1PR3-/- mice exhibited a phenotype of partial lipodystrophy, exacerbated insulin resistance and glucose intolerance. This worsened metabolic phenotype of HFD-fed S1PR3-/- mice was mechanistically linked with increased adipose inflammation, adipose macrophage and T-cell accumulation, hepatic inflammation and hepatic steatosis. In 3T3-L1 preadipocytes S1P increased adipogenesis and S1P-S1PR3 signalling regulated the expression of PPARγ, suggesting a novel role for this signalling pathway in the adipogenic program. These results reveal an anti-diabetic role for S1P, and, that S1P-S1PR3 signalling in the adipose and liver defends against excessive inflammation and steatosis to maintain metabolic homeostasis at key regulatory pathways.

    Topics: Animals; Biological Phenomena; Diet, High-Fat; Fatty Liver; Humans; Inflammation; Lysophospholipids; Mice; Mice, Inbred C57BL; Obesity; Sphingosine; Sphingosine-1-Phosphate Receptors

2022
Sphingosine-1-phosphate analog FTY720 reverses obesity but not age-induced anabolic resistance to muscle contraction.
    American journal of physiology. Cell physiology, 2019, 09-01, Volume: 317, Issue:3

    Sarcopenia, the age-associated loss of skeletal muscle mass and function, is coupled with declines in physical functioning leading to subsequent higher rates of disability, frailty, morbidity, and mortality. Aging and obesity independently contribute to muscle atrophy that is assumed to be a result of the activation of mutual physiological pathways. Understanding mechanisms contributing to the induction of skeletal muscle atrophy with aging and obesity is important for determining targets that may have pivotal roles in muscle loss in these conditions. We find that aging and obesity equally induce an anabolic resistance to acute skeletal muscle contraction as observed with decreases in anabolic signaling activation after contraction. Furthermore, treatment with the sphingosine-1-phosphate analog FTY720 for 4 wk increased lean mass and strength, and the anabolic signaling response to contraction was improved in obese but not older animals. To determine the role of chronic inflammation and different fatty acids on anabolic resistance in skeletal muscle cells, we overexpressed IKKβ with and without exposure to saturated fatty acid (SFA; palmitic acid), polyunsaturated fatty acid (eicosapentaenoic acid), and monounsaturated fatty acid (oleic acid). We found that IKKβ overexpression increased inflammation markers in muscle cells, and this chronic inflammation exacerbated anabolic resistance in response to SFA. Pretreatment with FTY720 reversed the inflammatory effects of palmitic acid in the muscle cells. Taken together, these data demonstrate chronic inflammation can induce anabolic resistance, SFA aggravates these effects, and FTY720 can reverse this by decreasing ceramide accumulation in skeletal muscle.

    Topics: Aging; Animals; Cells, Cultured; Diet, High-Fat; Fingolimod Hydrochloride; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Muscle Contraction; Muscle, Skeletal; Obesity; Random Allocation; Sarcopenia; Sphingosine; Sphingosine 1 Phosphate Receptor Modulators

2019
Targeting the SphK1/S1P/S1PR1 Axis That Links Obesity, Chronic Inflammation, and Breast Cancer Metastasis.
    Cancer research, 2018, 04-01, Volume: 78, Issue:7

    Although obesity with associated inflammation is now recognized as a risk factor for breast cancer and distant metastases, the functional basis for these connections remain poorly understood. Here, we show that in breast cancer patients and in animal breast cancer models, obesity is a sufficient cause for increased expression of the bioactive sphingolipid mediator sphingosine-1-phosphate (S1P), which mediates cancer pathogenesis. A high-fat diet was sufficient to upregulate expression of sphingosine kinase 1 (SphK1), the enzyme that produces S1P, along with its receptor S1PR1 in syngeneic and spontaneous breast tumors. Targeting the SphK1/S1P/S1PR1 axis with FTY720/fingolimod attenuated key proinflammatory cytokines, macrophage infiltration, and tumor progression induced by obesity. S1P produced in the lung premetastatic niche by tumor-induced SphK1 increased macrophage recruitment into the lung and induced IL6 and signaling pathways important for lung metastatic colonization. Conversely, FTY720 suppressed IL6, macrophage infiltration, and S1P-mediated signaling pathways in the lung induced by a high-fat diet, and it dramatically reduced formation of metastatic foci. In tumor-bearing mice, FTY720 similarly reduced obesity-related inflammation, S1P signaling, and pulmonary metastasis, thereby prolonging survival. Taken together, our results establish a critical role for circulating S1P produced by tumors and the SphK1/S1P/S1PR1 axis in obesity-related inflammation, formation of lung metastatic niches, and breast cancer metastasis, with potential implications for prevention and treatment.

    Topics: Adaptor Proteins, Signal Transducing; Adenocarcinoma; Animals; Breast Neoplasms; Cell Line, Tumor; Culture Media, Conditioned; Cytokines; Diet, High-Fat; Disease Models, Animal; Female; Fingolimod Hydrochloride; Humans; Immunosuppressive Agents; Inflammation; Interleukin-6; Lung; Lysophospholipids; Macrophages; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Obesity; Receptors, Lysosphingolipid; Sphingosine; Sphingosine-1-Phosphate Receptors

2018
Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss.
    Nature medicine, 2018, Volume: 24, Issue:5

    Sphingosine-1-phosphate (S1P) signaling influences bone metabolism, but its therapeutic potential in bone disorders has remained unexplored. We show that raising S1P levels in adult mice through conditionally deleting or pharmacologically inhibiting S1P lyase, the sole enzyme responsible for irreversibly degrading S1P, markedly increased bone formation, mass and strength and substantially decreased white adipose tissue. S1P signaling through S1P

    Topics: Adipocytes; Adipose Tissue; Aldehyde-Lyases; Anabolic Agents; Animals; Bone Resorption; Cell Differentiation; Cell Line; Femur; Gene Deletion; Lysophospholipids; Mice, Knockout; Molecular Targeted Therapy; Obesity; Organ Size; Osteoblasts; Osteoclasts; Osteoporosis; Osteoprotegerin; PPAR gamma; Signal Transduction; Sp7 Transcription Factor; Sphingosine; X-Ray Microtomography

2018
Sphingolipids metabolism in the salivary glands of rats with obesity and streptozotocin induced diabetes.
    Journal of cellular physiology, 2017, Volume: 232, Issue:10

    Diabetes is considered a major public health problem affecting millions of individuals worldwide. Remarkably, scientific reports regarding salivary glands sphingolipid metabolism in diabetes are virtually non-existent. This is odd given the well-established link between the both in other tissues (e.g., skeletal muscles, liver) and the key role of these glands in oral health preservation. The aim of this paper is to examine sphingolipids metabolism in the salivary glands in (pre)diabetes (evoked by high fat diet feeding or streptozotocin). Wistar rats were allocated into three groups: control, HFD-, or STZ-diabetes. The content of major sphingolipid classes in the parotid (PSG) and submandibular (SMSG) glands was assessed via chromatography. Additionally, Western blot analyses were employed for the evaluation of key sphingolipid signaling pathway enzyme levels. No changes in ceramide content in the PSG were found, whereas an increase in ceramide concentration for SMSG of the STZ group was observed. This was accompanied by an elevation in SPT1 level. Probably also sphingomyelin hydrolysis was increased in the SMSG of the STZ-diabetic rats, since we observed a significant drop in the amount of SM. PSG and SMSG respond differently to (pre)diabetes, with clearer pattern presented by the later gland. An activation of sphingomyelin signaling pathway was observed in the course of STZ-diabetes, that is, metabolic condition with rapid onset/progression. Whereas, chronic HFD lead to an inhibition of sphingomyelin signaling pathway in the salivary glands (manifested in an inhibition of ceramide de novo synthesis and accumulation of S1P).

    Topics: Animals; Ceramides; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diet, High-Fat; Insulin Resistance; Lysophospholipids; Male; Obesity; Parotid Gland; Phosphotransferases (Alcohol Group Acceptor); Rats, Wistar; Signal Transduction; Sphingolipids; Sphingomyelin Phosphodiesterase; Sphingosine; Sphingosine N-Acyltransferase; Streptozocin; Submandibular Gland

2017
Doxorubicin effect is enhanced by sphingosine-1-phosphate signaling antagonist in breast cancer.
    The Journal of surgical research, 2017, Volume: 219

    Doxorubicin is one of the most commonly used chemotherapeutic drugs for breast cancer; however, its use is limited by drug resistance and side effects. We hypothesized that adding FTY720, a sphingosine-1-phosphate (S1P) receptor functional antagonist, to doxorubicin would potentiate its effects by suppression of drug-induced inflammation.. The Cancer Genome Atlas, Gene Expression Omnibus data sets, and National Cancer Institute-60 panel were used for gene expressions and gene set enrichment analysis. E0771 syngeneic mammary tumor cells were used. OB/OB mice fed with western high-fat diet were used as an obesity model.. STAT3 expression was significantly increased after doxorubicin treatment in human breast cancer that implicates that doxorubicin evokes inflammation. Expression of sphingosine kinase 1, the enzyme that produces S1P and links inflammation and cancer, tended to be higher in doxorubicin-resistant human cancer and cell lines. In a murine breast cancer model, sphingosine kinase 1, S1P receptor 1, interleukin 6, and STAT3 were overexpressed in the doxorubicin-treated group, whereas all of them were significantly suppressed with addition of FTY720. Combination therapy synergistically suppressed cancer growth both in vitro and in vivo. Furthermore, combination therapy showed higher efficacy in an obesity breast cancer model, where high body mass index demonstrated trends toward worse disease-free and overall survival, and high-serum S1P levels in human patients and volunteers.. We found that FTY720 enhanced the efficacy of doxorubicin by suppression of drug-induced inflammation, and combination therapy showed stronger effect in obesity-related breast cancer.

    Topics: Animals; Antibiotics, Antineoplastic; Antineoplastic Combined Chemotherapy Protocols; Body Mass Index; Breast Neoplasms; Cell Line, Tumor; Doxorubicin; Drug Resistance, Neoplasm; Female; Fingolimod Hydrochloride; Humans; Immunosuppressive Agents; Lysophospholipids; Mammary Neoplasms, Experimental; Mice; Obesity; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid; Retrospective Studies; Sphingosine; STAT3 Transcription Factor

2017
Deletion of sphingosine kinase 1 ameliorates hepatic steatosis in diet-induced obese mice: Role of PPARγ.
    Biochimica et biophysica acta, 2016, Volume: 1861, Issue:2

    Sphingolipid metabolites have emerged playing important roles in the pathogenesis of nonalcoholic fatty liver disease, whereas the underlying mechanism remains largely unknown. In the present study, we provide both in vitro and in vivo evidence showing a pathogenic role of sphingosine kinase 1 (SphK1) in hepatocellular steatosis. We found that levels of SphK1 expression were significantly increased in steatotic hepatocytes. Enforced overexpression of SphK1 or treatment with sphingosine 1-phosphate (S1P) markedly enhanced hepatic lipid accumulation. In contrast, the siRNA-mediated knockdown of SphK1 or S1P receptors, S1P2 and S1P3, profoundly inhibited lipid accumulation in hepatocytes. Moreover, Sphk1(-/-) mice exhibited a significant amelioration of hepatosteatosis under diet-induced obese (DIO) conditions, compared to wild-type littermates. In addition, DIO-induced up-regulation of PPARγ and its target genes were significantly reduced by SphK1 deficiency. Furthermore, treatment of hepatocytes with S1P induces a dose-dependent increase in PPARγ expression at the transcriptional level. Blockage of S1P receptors and the Akt-mTOR signaling profoundly inhibited S1P-induced PPARγ expression. Notably, down-regulation of PPARγ by using its siRNA significantly diminished the pro-steatotic effect of SphK1/S1P. Thus, the study demonstrates a new pathway connecting SphK1 and PPARγ involved in the pathogenesis of hepatocellular steatosis.

    Topics: Animals; Diet, High-Fat; Dietary Fats; Fatty Liver; Gene Expression Regulation; Hepatocytes; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Obese; Obesity; Phosphotransferases (Alcohol Group Acceptor); PPAR gamma; Proto-Oncogene Proteins c-akt; Receptors, Lysosphingolipid; RNA, Small Interfering; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; TOR Serine-Threonine Kinases; Transcription, Genetic

2016
Increased Levels of Sphingosylphosphorylcholine (SPC) in Plasma of Metabolic Syndrome Patients.
    PloS one, 2015, Volume: 10, Issue:10

    Recent developments in lipid mass spectrometry enable extensive lipid class and species analysis in metabolic disorders such as diabesity and metabolic syndrome. The minor plasma lipid class sphingosylphosphorylcholine (SPC) was identified as a ligand for lipid sensitive G-protein coupled receptors playing a key role in cell growth, differentiation, motility, calcium signaling, tissue remodeling, vascular diseases and cancer. However, information about its role in diabesity patients is sparse. In this study, we analyzed plasma lipid species in patients at risk for diabesity and the metabolic syndrome and compared them with healthy controls. Our data show that SPC is significantly increased in plasma samples from metabolic syndrome patients but not in plasma from patients at risk for diabesity. Detailed SPC species analysis showed that the observed increase is due to a significant increase in all detected SPC subspecies. Moreover, a strong positive correlation is observed between total SPC and individual SPC species with both body mass index and the acute phase low grade inflammation marker soluble CD163 (sCD163). Collectively, our study provides new information on SPC plasma levels in metabolic syndrome and suggests new avenues for investigation.

    Topics: Biomarkers; Female; Humans; Inflammation; Lipids; Lysophospholipids; Male; Metabolic Syndrome; Middle Aged; Obesity; Phosphorylcholine; Risk Factors; Sphingosine; Tetraspanin 30

2015
Plasma sphingosine-1-phosphate is elevated in obesity.
    PloS one, 2013, Volume: 8, Issue:9

    Dysfunctional lipid metabolism is a hallmark of obesity and insulin resistance and a risk factor for various cardiovascular and metabolic complications. In addition to the well known increase in plasma triglycerides and free fatty acids, recent work in humans and rodents has shown that obesity is associated with elevations in the bioactive class of sphingolipids known as ceramides. However, in obesity little is known about the plasma concentrations of sphinogsine-1-phosphate (S1P), the breakdown product of ceramide, which is an important signaling molecule in mammalian biology. Therefore, the purpose of this study was to examine the impact of obesity on circulating S1P concentration and its relationship with markers of glucose metabolism and insulin sensitivity.. Plasma S1P levels were determined in high-fat diet (HFD)-induced and genetically obese (ob/ob) mice along with obese humans. Circulating S1P was elevated in both obese mouse models and in obese humans compared with lean healthy controls. Furthermore, in humans, plasma S1P positively correlated with total body fat percentage, body mass index (BMI), waist circumference, fasting insulin, HOMA-IR, HbA1c (%), total and LDL cholesterol. In addition, fasting increased plasma S1P levels in lean healthy mice.. We show that elevations in plasma S1P are a feature of both human and rodent obesity and correlate with metabolic abnormalities such as adiposity and insulin resistance.

    Topics: Adult; Animals; Biomarkers; Case-Control Studies; Diet, High-Fat; Food Deprivation; Humans; Insulin Resistance; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Sphingosine; Young Adult

2013
Increased plasma sphingosine-1-phosphate in obese individuals and its capacity to increase the expression of plasminogen activator inhibitor-1 in adipocytes.
    Coronary artery disease, 2013, Volume: 24, Issue:8

    Concentrations of plasminogen activator inhibitor-1 (PAI-1) are increased in obese individuals. One source of PAI-1 is adipocytes. Hypoxia develops within adipose tissue as it expands, presumably contributing to increased levels of sphingosine-1-phosphate (S1P). S1P is a breakdown product of sphingosine, ubiquitous in cell membranes. We have shown previously that S1P increases the expression of PAI-1 in human liver-derived cell line. In the present study, we aimed to determine whether hypoxia induces S1P in adipocytes, thereby potentially contributing to an increase in PAI-1 and hence constraints on fibrinolysis associated with obesity.. Mouse 3T3-L1 adipocytes were exposed to CoCl2 to simulate hypoxia. Assays were performed for PAI-1 mRNA (quantitative PCR) and S1P (high-performance liquid chromatography).. The physiologic concentration of S1P increased PAI-1 mRNA expression. The S1P2 receptor antagonist attenuated the increase in PAI-1. Adipocytes expressed sphingosine kinase 1/2 (SPHK1/2) and S1P lyase, key enzymes involved in S1P production and degradation. Hypoxia increased SPHK activity and decreased S1P lyase mRNA. Hypoxia reduced cytosolic sphingosine and increased S1P release into conditioned medium. Inhibitors of ABCA1 and ABCC1 reduced the release of S1P into conditioned media. In obese patients with uncomplicated dyslipidemia and hypertension, plasma S1P was increased compared with that in nonobese and lean individuals.. Hypoxia in adipose tissue of obesity can promote elaboration of S1P that binds to S1P2 receptors in an autocrine or a paracrine manner. S1P potentially contributes toward increased expression of PAI-1 and consequent constraints on fibrinolysis. S1P production and extracellular transport provide an attractive target for therapy to attenuate impaired fibrinolysis associated with obesity.

    Topics: 3T3-L1 Cells; Adipocytes; Aged; Aldehyde-Lyases; Animals; ATP Binding Cassette Transporter 1; Body Mass Index; Cell Hypoxia; Culture Media, Conditioned; Female; Humans; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Middle Aged; Multidrug Resistance-Associated Proteins; Obesity; Phosphotransferases (Alcohol Group Acceptor); Plasminogen Activator Inhibitor 1; Receptors, Lysosphingolipid; RNA, Messenger; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Time Factors; Up-Regulation

2013
Identification of sphingolipid metabolites that induce obesity via misregulation of appetite, caloric intake and fat storage in Drosophila.
    PLoS genetics, 2013, Volume: 9, Issue:12

    Obesity is defined by excessive lipid accumulation. However, the active mechanistic roles that lipids play in its progression are not understood. Accumulation of ceramide, the metabolic hub of sphingolipid metabolism, has been associated with metabolic syndrome and obesity in humans and model systems. Here, we use Drosophila genetic manipulations to cause accumulation or depletion of ceramide and sphingosine-1-phosphate (S1P) intermediates. Sphingolipidomic profiles were characterized across mutants for various sphingolipid metabolic genes using liquid chromatography electrospray ionization tandem mass spectroscopy. Biochemical assays and microscopy were used to assess classic hallmarks of obesity including elevated fat stores, increased body weight, resistance to starvation induced death, increased adiposity, and fat cell hypertrophy. Multiple behavioral assays were used to assess appetite, caloric intake, meal size and meal frequency. Additionally, we utilized DNA microarrays to profile differential gene expression between these flies, which mapped to changes in lipid metabolic pathways. Our results show that accumulation of ceramides is sufficient to induce obesity phenotypes by two distinct mechanisms: 1) Dihydroceramide (C14:0) and ceramide diene (C14:2) accumulation lowered fat store mobilization by reducing adipokinetic hormone- producing cell functionality and 2) Modulating the S1P: ceramide (C14:1) ratio suppressed postprandial satiety via the hindgut-specific neuropeptide like receptor dNepYr, resulting in caloric intake-dependent obesity.

    Topics: Adipose Tissue; Adiposity; Animals; Appetite; Ceramides; Chromatography, Liquid; Disease Models, Animal; Drosophila melanogaster; Energy Intake; Humans; Lysophospholipids; Metabolic Syndrome; Mutation; Obesity; Oligonucleotide Array Sequence Analysis; Spectrometry, Mass, Electrospray Ionization; Sphingosine

2013
Serum sphingolipids and inflammatory mediators in adolescents at risk for metabolic syndrome.
    Endocrine, 2012, Volume: 41, Issue:3

    The purpose of this study was to determine low-grade inflammation associated with obesity that is mediated partially by TNF-α, an adipocytokine which stimulates sphingomyelinase activity in adipocytes. Circulating ceramide (Cer) and sphingosine 1-phosphate (S1P) are elevated in genetically obese (ob/ob) mice. We aimed to determine whether serum sphingolipid concentrations correlate with measures of obesity, insulin resistance, and lipid profiles in overweight versus lean adolescents. This cross-sectional study recruited 30 healthy overweight (body mass index, BMI ≥ 85%) and 15 lean (BMI 10-84%) adolescents. Anthropometric measurements and fasting blood samples were collected at one clinic visit. Serum glucose, insulin, and fasting lipid profiles were measured. Serum adipocytokine concentrations were measured by ELISA or colorimetric assay and sphingolipids were measured by HPLC-mass spectrometry. Between group differences in serum sphingolipid concentrations were assessed. Correlations between sphingolipid concentrations and (i) body mass index, (ii) calculated homeostasis model assessment of insulin resistance (HOMA-IR), (iii) adipocytokines, and (iv) lipoproteins were determined. The results showed that significant differences in HOMA-IR (4.5 ± 3.2 vs. 1.2 ± 0.7), free fatty acids (0.8 ± 0.3 mmol/l vs. 0.4 ± 0.3 mmol/l), and adiponectin (6.4 ± 3.8 vs. 12.6 ± 9.9 μg/ml) were seen between groups (overweight vs. lean). There were significant correlations between Cer and TNF-α (r = 0.429), S1P and TNF-α (r = 0.288), Cer and adiponectin (r = 0.321), Cer:S1P and adiponectin (r = 0.324), Cer and HOMA-IR (r = 0.307), and Cer:S1P and LDL cholesterol (r = 0.453); these associations persisted after adjustment for BMI Z-score, sex, and Tanner stage. We concluded that elevated sphingolipid concentrations correlate with TNF-α, adiponectin, lipoprotein profiles, and HOMA-IR. Ceramide is associated with atherogenic lipid profiles and the development of insulin resistance in obese adolescents, similar to adults.

    Topics: Adipokines; Adiponectin; Adolescent; Body Mass Index; Ceramides; Cholesterol, LDL; Cross-Sectional Studies; Fatty Acids, Nonesterified; Female; Humans; Inflammation Mediators; Insulin Resistance; Lysophospholipids; Male; Metabolic Syndrome; New York; Obesity; Risk; Sphingolipids; Sphingosine; Tumor Necrosis Factor-alpha

2012
Palmitate increases sphingosine-1-phosphate in C2C12 myotubes via upregulation of sphingosine kinase message and activity.
    Journal of lipid research, 2009, Volume: 50, Issue:9

    Studies in skeletal muscle demonstrate that elevation of plasma FFAs increases the sphingolipid ceramide. We aimed to determine the impact of FFA oversupply on total sphingolipid profiles in a skeletal muscle model. C2C12 myotubes were treated with palmitate (PAL). Lipidomics analysis revealed pleiotropic effects of PAL on cell sphingolipids not limited to ceramides. (13)C labeling demonstrated that PAL activated several branches of sphingolipid synthesis by distinct mechanisms. Intriguingly, PAL increased sphingosine-1-phosphate independently of de novo synthesis. Quantitative real-time PCR demonstrated that PAL increased sphingosine kinase 1 (SK1) mRNA by approximately 4-fold. This was accompanied by a 2.3-fold increase in sphingosine kinase enzyme activity. This upregulation did not occur upon treatment with oleate, suggesting some level of specificity for PAL. These findings were recapitulated in the diet-induced obesity mouse model, in which high-fat feeding increased SK1 message in skeletal muscle over 2.3-fold. These data suggest that the impact of elevated FFA on sphingolipids reaches beyond ceramides and de novo sphingolipid synthesis. Moreover, these findings identify PAL as a novel regulatory stimulus for SK1.

    Topics: Animals; Cell Line; Ceramides; Diet; Enzyme Activation; Humans; Isotope Labeling; Lysophospholipids; Mice; Muscle Fibers, Skeletal; Obesity; Oleic Acid; Palmitates; Phosphotransferases (Alcohol Group Acceptor); Rats; Serine C-Palmitoyltransferase; Signal Transduction; Sphingosine; Substrate Specificity; Up-Regulation

2009
Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome.
    American journal of physiology. Endocrinology and metabolism, 2009, Volume: 297, Issue:1

    Although obesity is associated with multiple features of the metabolic syndrome (insulin resistance, leptin resistance, hepatic steatosis, chronic inflammation, etc.), the molecular changes that promote these conditions are not completely understood. Here, we tested the hypothesis that elevated ceramide biosynthesis contributes to the pathogenesis of obesity and the metabolic syndrome. Chronic treatment for 8 wk of genetically obese (ob/ob), and, high-fat diet-induced obese (DIO) mice with myriocin, an inhibitor of de novo ceramide synthesis, decreased circulating ceramides. Decreased ceramide was associated with reduced weight, enhanced metabolism and energy expenditure, decreased hepatic steatosis, and improved glucose hemostasis via enhancement of insulin signaling in the liver and muscle. Inhibition of de novo ceramide biosynthesis decreased adipose expression of suppressor of cytokine signaling-3 (SOCS-3) and induced adipose uncoupling protein-3 (UCP3). Moreover, ceramide directly induced SOCS-3 and inhibited UCP3 mRNA in cultured adipocytes suggesting a direct role for ceramide in regulation of metabolism and energy expenditure. Inhibition of de novo ceramide synthesis had no effect on adipose tumor necrosis factor-alpha (TNF-alpha) expression but dramatically reduced adipose plasminogen activator inhibitor-1 (PAI-1) and monocyte chemoattactant protein-1 (MCP-1). This study highlights a novel role for ceramide biosynthesis in body weight regulation, energy expenditure, and the metabolic syndrome.

    Topics: Adipose Tissue; Animals; Body Weight; Ceramides; Energy Metabolism; Fatty Acids, Monounsaturated; Ion Channels; Lysophospholipids; Male; Metabolic Syndrome; Mice; Mice, Inbred C57BL; Mitochondrial Proteins; Obesity; Organ Size; Sphingolipids; Sphingosine; Suppressor of Cytokine Signaling 3 Protein; Suppressor of Cytokine Signaling Proteins; Uncoupling Protein 3

2009