sphingosine-1-phosphate and Nervous-System-Diseases

sphingosine-1-phosphate has been researched along with Nervous-System-Diseases* in 9 studies

Reviews

5 review(s) available for sphingosine-1-phosphate and Nervous-System-Diseases

ArticleYear
The S1P-S1PR Axis in Neurological Disorders-Insights into Current and Future Therapeutic Perspectives.
    Cells, 2020, 06-22, Volume: 9, Issue:6

    Sphingosine 1-phosphate (S1P), derived from membrane sphingolipids, is a pleiotropic bioactive lipid mediator capable of evoking complex immune phenomena. Studies have highlighted its importance regarding intracellular signaling cascades as well as membrane-bound S1P receptor (S1PR) engagement in various clinical conditions. In neurological disorders, the S1P-S1PR axis is acknowledged in neurodegenerative, neuroinflammatory, and cerebrovascular disorders. Modulators of S1P signaling have enabled an immense insight into fundamental pathological pathways, which were pivotal in identifying and improving the treatment of human diseases. However, its intricate molecular signaling pathways initiated upon receptor ligation are still poorly elucidated. In this review, the authors highlight the current evidence for S1P signaling in neurodegenerative and neuroinflammatory disorders as well as stroke and present an array of drugs targeting the S1P signaling pathway, which are being tested in clinical trials. Further insights on how the S1P-S1PR axis orchestrates disease initiation, progression, and recovery may hold a remarkable potential regarding therapeutic options in these neurological disorders.

    Topics: Humans; Lysophospholipids; Nervous System Diseases; Signal Transduction; Sphingosine

2020
Integrated sphingosine-1 phosphate signaling in the central nervous system: From physiological equilibrium to pathological damage.
    Pharmacological research, 2016, Volume: 104

    Sphingosine-1 phosphate (S1P), a bioactive sphingolipid metabolite, plays an essential role in cellular homeostasis. It is well evidenced that enzymes responsible for S1P production, as well as S1P receptors are expressed in the central nervous system (CNS), implying that S1P may contribute to CNS physiology. In current review, we will present the current knowledge about developmental and neuromodulatory functions of S1P in the brain. Considering neuroprotective effects of S1P, we also review the relation between S1P and cellular autophagy, mitochondrial function, oxidative stress and apoptosis as well as molecular pathways underlying neuroprotective effects of S1P. Given these pivotal functions, in the last section, we will summarize latest findings about possible contribution of S1P dysregulation in neurological disorders like Alzheimer's disease and multiple sclerosis.

    Topics: Animals; Brain; Humans; Lysophospholipids; Nervous System Diseases; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine

2016
Diversity and plasticity of microglial cells in psychiatric and neurological disorders.
    Pharmacology & therapeutics, 2015, Volume: 154

    Recent advanced immunological analyses have revealed that the diversity and plasticity of macrophages lead to the identification of functional polarization states (classically activated M1 type and alternatively activated M2 type) which are dependent on the extracellular environment. M1 and M2 polarization states of macrophages play an important role in controlling the balance between pro-inflammatory and anti-inflammatory conditions. Microglial cells are resident mononuclear phagocytes in the central nervous system (CNS), express several macrophage-associated markers, and appear to display functional polarization states similar to macrophages. Like M1 macrophages, M1 polarized microglia can produce pro-inflammatory cytokines and mediators such as interleukin (IL) 1β, IL-6, tumor necrosis factor-α, CC-chemokine ligand 2, nitric oxide, and reactive oxygen species, suggesting that these molecules contribute to dysfunction of neural network in the CNS. On the other hand, M2 polarized microglia can produce anti-inflammatory cytokine, IL-10 and express several receptors that are implicated in inhibiting inflammation and restoring homeostasis. In this review, we summarize the diversity, plasticity, and immunoregulatory functions of M1 and M2 microglia in psychiatric and neurological disorders. Based on these aspects, we propose a contribution of imbalance between M1 and M2 polarization of microglia in bipolar disorder, obesity, amyotrophic lateral sclerosis, and Rett syndrome. Consequently, molecules that normalize the imbalance between M1 and M2 microglial polarization states may provide a beneficial therapeutic target for the treatment of these disorders.

    Topics: Adiponectin; Bipolar Disorder; Brain; Cytokines; Endocannabinoids; Feeding Behavior; Ghrelin; Humans; Inflammation Mediators; Lysophospholipids; Macrophages; Mental Disorders; Microglia; Nerve Net; Nervous System Diseases; Obesity; Social Behavior; Sphingosine

2015
Multifaceted roles of sphingosine-1-phosphate: how does this bioactive sphingolipid fit with acute neurological injury?
    Journal of neuroscience research, 2008, May-15, Volume: 86, Issue:7

    Sphingosine-1-phosphate (Sph-1-P) is an essential bioactive sphingolipid metabolite that has currently become the focus of intense interest. Sph-1-P is generated by the enzyme sphingosine kinase (SphK) in response to diverse stimuli, including growth factors, cytokines, and G-protein-coupled receptor (GPCR) agonists. Its precursor, sphingosine (Sph), is produced from the precursor ceramide (Cer) via a ceramidase (CDase) that is released from membrane sphingomyelin (SPM) by sphingomyelinases (SMase). Accumulating evidence indicates that Sph-1-P is the key regulatory lipid involved in the metabolism of sphingolipids and is involved in the control of numerous aspects of cell physiology, including mitogenesis, differentiation, migration, and apoptosis. These actions of Sph-1-P are mediated by a family of high-affinity S1P receptors, named S1P1-5, which are coupled differentially via G(i), G(q), G(12/13), and Rho to multiple effector systems, including adenylate cyclase, phospholipases C (PLC) and D (PLD), extracellular-signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and nonreceptor tyrosine kinases. In this Review, we accumulate available evidence implying that sphingolipid signaling may represent a novel neuroprotective target to counteract the pathophysiology of acute brain and spinal cord injury in regard to apoptotic cell death mechanisms, mitochondrial dysfunction, lipid hydrolysis, and oxidative damage mechanisms. Furthermore, we discuss how Sph-1-P agonist approaches might be expected to increase the resistance of the central nervous system to injury by promoting neurotrophic activity, neurogenesis, and angiogenesis. On the other hand, antagonists of certain Sph-1-P-related activity might possess proregenerative effects via promotion of neurite growth and inhibition of astrogliotic scarring.

    Topics: Animals; Apoptosis; Cell Differentiation; Cell Movement; Cell Proliferation; Humans; Lysophospholipids; Nervous System Diseases; Signal Transduction; Sphingolipids; Sphingosine

2008
Effects of LPA and S1P on the nervous system and implications for their involvement in disease.
    Current drug targets, 2007, Volume: 8, Issue:1

    Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are two well-studied lysophospholipids that are known to be important regulators of cellular events. Their actions are mediated by activating a family of G-protein coupled receptors present in many cell types and tissues. These receptors have diverse biological roles owing to the heterogeneity of their signal transduction pathways. Many of these receptors are expressed in subsets of cells in the developing and mature mammalian nervous system and are thought to have important functions in its formation and maintenance. They are also widely expressed within other organ systems such as the immune system. Growing interest in the field has stimulated the development of a number of molecules that act as agonists or antagonists to LPA and S1P receptors. These molecules may lead to the development of new therapeutic compounds. Indeed, one such compound (FTY720) is currently in clinical trials for use in preventing transplant rejection and treating multiple sclerosis. The purpose of this manuscript is to: 1) review effects elicited by LPA and S1P on cells and tissues with a particular emphasis on the nervous system, 2) examine possible roles of these lipids in the development of disease, and 3) summarize the existing literature describing their agonists/antagonists.

    Topics: Animals; Humans; Lysophospholipids; Nervous System; Nervous System Diseases; Sphingosine

2007

Other Studies

4 other study(ies) available for sphingosine-1-phosphate and Nervous-System-Diseases

ArticleYear
Plasma sphingosine 1-phosphate concentrations and cardiovascular autonomic neuropathy in individuals with type 2 diabetes.
    Scientific reports, 2020, 07-29, Volume: 10, Issue:1

    The aim of this study was to test the hypothesis that plasma sphingosine 1-phosphate (S1P) levels are associated with the risk of cardiovascular autonomic neuropathy (CAN) in type 2 diabetes patients. This cross-sectional study included 287 individuals with type 2 diabetes. CAN was evaluated using cardiovascular reflex tests. Logistic regression analyses were conducted to assess the relationship between plasma S1P levels and CAN. Plasma S1P concentrations were significantly lower in individuals with CAN than in those without CAN. There was a significant interaction between plasma S1P levels and sex with respect to CAN (p for interaction = 0.003). When stratified by sex, the association between plasma S1P levels and CAN exhibited a sex difference; in multivariable analysis, plasma S1P levels were significantly associated with CAN in women (odds ratio per standard deviation increase in the log-transformed value, 0.40; 95% confidence interval, 0.23-0.70, p = 0.001). However, there was no significant association between plasma S1P and CAN in men. Plasma S1P concentrations were inversely associated with CAN only in women with type 2 diabetes.

    Topics: Adult; Aged; Autonomic Nervous System; Cardiovascular System; Cross-Sectional Studies; Diabetes Mellitus, Type 2; Female; Humans; Lysophospholipids; Male; Middle Aged; Nervous System Diseases; Odds Ratio; Prevalence; Regression Analysis; Risk Factors; Sphingosine

2020
DEGS1 variant causes neurological disorder.
    European journal of human genetics : EJHG, 2019, Volume: 27, Issue:11

    Sphingolipidoses are monogenic lipid storage diseases caused by variants in enzymes of lipid synthesis and metabolism. We describe an autosomal recessive complex neurological disorder affecting consanguineous kindred. All four affected individuals, born at term following normal pregnancies, had mild to severe intellectual disability, spastic quadriplegia, scoliosis and epilepsy in most, with no dysmorphic features. Brain MRI findings were suggestive of leukodystrophy, with abnormal hyperintense signal in the periventricular perioccipital region and thinning of the body of corpus callosum. Notably, all affected individuals were asymptomatic at early infancy and developed normally until the age of 8-18 months, when deterioration ensued. Homozygosity mapping identified a single 8.7 Mb disease-associated locus on chromosome 1q41-1q42.13 between rs1511695 and rs537250 (two-point LOD score 2.1). Whole exome sequencing, validated through Sanger sequencing, identified within this locus a single disease-associated homozygous variant in DEGS1, encoding C4-dihydroceramide desaturase, an enzyme of the ceramide synthesis pathway. The missense variant, segregating within the family as expected for recessive heredity, affects an evolutionary-conserved amino acid of all isoforms of DEGS1 (c.656A>G, c.764A>G; p.(N219S), p.(N255S)) and was not found in a homozygous state in ExAC and gnomAD databases or in 300 ethnically matched individuals. Lipidomcs analysis of whole blood of affected individuals demonstrated augmented levels of dihydroceramides, dihydrosphingosine, dihydrosphingosine-1-phosphate and dihydrosphingomyelins with reduced levels of ceramide, sphingosine, sphingosine-1-phosphate and monohexosylceramides, as expected in malfunction of C4-dihydroceramide desaturase. Thus, we describe a sphingolipidosis causing a severe regressive neurological disease.

    Topics: Adolescent; Adult; Brain; Ceramides; Cerebrosides; Child; Child, Preschool; Exome Sequencing; Fatty Acid Desaturases; Female; Genetic Predisposition to Disease; Genetic Variation; Homozygote; Humans; Infant; Intellectual Disability; Lysophospholipids; Male; Mutation, Missense; Nervous System Diseases; Pedigree; Phenotype; Sequence Analysis, DNA; Sphingosine; Young Adult

2019
Modulation of sphingosine 1-phosphate signaling in neurologic disease.
    Neurology, 2011, Feb-22, Volume: 76, Issue:8 Suppl 3

    Topics: Fingolimod Hydrochloride; Humans; Immunosuppressive Agents; Lysophospholipids; Nervous System Diseases; Propylene Glycols; Signal Transduction; Sphingosine

2011
Sphingosine-1-phosphate and its receptors as a possible therapeutic target in autoimmune diseases of the nervous system.
    Journal of neuroimmunology, 2010, Jan-25, Volume: 218, Issue:1-2

    Topics: Animals; Autoimmune Diseases; Humans; Lysophospholipids; Nervous System Diseases; Receptors, Lysosphingolipid; Sphingosine

2010