sphingosine-1-phosphate and Necrosis

sphingosine-1-phosphate has been researched along with Necrosis* in 11 studies

Other Studies

11 other study(ies) available for sphingosine-1-phosphate and Necrosis

ArticleYear
YAP-dependent necrosis occurs in early stages of Alzheimer's disease and regulates mouse model pathology.
    Nature communications, 2020, 01-24, Volume: 11, Issue:1

    The timing and characteristics of neuronal death in Alzheimer's disease (AD) remain largely unknown. Here we examine AD mouse models with an original marker, myristoylated alanine-rich C-kinase substrate phosphorylated at serine 46 (pSer46-MARCKS), and reveal an increase of neuronal necrosis during pre-symptomatic phase and a subsequent decrease during symptomatic phase. Postmortem brains of mild cognitive impairment (MCI) rather than symptomatic AD patients reveal a remarkable increase of necrosis. In vivo imaging reveals instability of endoplasmic reticulum (ER) in mouse AD models and genome-edited human AD iPS cell-derived neurons. The level of nuclear Yes-associated protein (YAP) is remarkably decreased in such neurons under AD pathology due to the sequestration into cytoplasmic amyloid beta (Aβ) aggregates, supporting the feature of YAP-dependent necrosis. Suppression of early-stage neuronal death by AAV-YAPdeltaC reduces the later-stage extracellular Aβ burden and cognitive impairment, suggesting that preclinical/prodromal YAP-dependent neuronal necrosis represents a target for AD therapeutics.

    Topics: Adaptor Proteins, Signal Transducing; Alzheimer Disease; Amyloid beta-Peptides; Animals; Cell Cycle Proteins; Cell Nucleus; Cognitive Dysfunction; Computer Simulation; Disease Models, Animal; Endoplasmic Reticulum; Female; HMGB1 Protein; Humans; Induced Pluripotent Stem Cells; Lysophospholipids; Male; Mice, Transgenic; Necrosis; Neurons; Signal Transduction; Sphingosine; Time-Lapse Imaging; Transcription Factors; YAP-Signaling Proteins

2020
Extracellular vesicles from human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs) protect against renal ischemia/reperfusion injury via delivering specificity protein (SP1) and transcriptional activating of sphingosine kinase
    Cell death & disease, 2017, 12-11, Volume: 8, Issue:12

    Renal ischemia-reperfusion is a main cause of acute kidney injury (AKI), which is associated with high mortality. Here we show that extracellular vesicles (EVs) secreted from hiPSC-MSCs play a critical role in protection against renal I/R injury. hiPSC-MSCs-EVs can fuse with renal cells and deliver SP1 into target cells, subsequently active SK1 expression and increase S1P formation. Chromatin immunoprecipitation (ChIP) analyses and luciferase assay were used to confirm SP1 binds directly to the SK1 promoter region and promote promoter activity. Moreover, SP1 inhibition (MIT) or SK1 inhibition (SKI-II) completely abolished the renal protective effect of hiPSC-MSCs-EVs in rat I/R injury mode. However, pre-treatment of necroptosis inhibitor Nec-1 showed no difference with the administration of hiPSC-MSCs-EVs only. We then generated an SP1 knockout hiPSC-MSC cell line by CRISPR/Cas9 system and found that SP1 knockout failed to show the protective effect of hiPSC-MSCs-EVs unless restoring the level of SP1 by Ad-SP1 in vitro and in vivo. In conclusion, this study describes an anti-necroptosis effect of hiPSC-MSCs-EVs against renal I/R injury via delivering SP1 into target renal cells and intracellular activating the expression of SK1 and the generation of S1P. These findings suggest a novel mechanism for renal protection against I/R injury, and indicate a potential therapeutic approach for a variety of renal diseases and renal transplantation.

    Topics: Acute Kidney Injury; Animals; Apoptosis; Cell Differentiation; Cell Line, Transformed; Epithelial Cells; Extracellular Vesicles; Gene Expression Regulation; Humans; Induced Pluripotent Stem Cells; Kidney; Lysophospholipids; Male; Mesenchymal Stem Cells; Necrosis; Phosphotransferases (Alcohol Group Acceptor); Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction; Sp1 Transcription Factor; Sphingosine

2017
Neuroprotective role of sphingosine-1-phosphate in L-BMAA treated neuroblastoma cells (SH-SY5Y).
    Neuroscience letters, 2015, Apr-23, Volume: 593

    Sphingosine-1-phosphate (S1P) is a bioactive lipid which regulates proliferation, cell migration, survival and differentiation by specific receptors activation. We studied its effects on L-BMAA treated neuroblastoma cells (SH-SY5Y), an amino acid that can trigger neurodegenerative diseases such as amyotrophic lateral sclerosis/Parkinson dementia complex (ALS/PDC). We found that S1P protects from necrosis and prevents the GSK3 increasing as long as the PI3K/AKT pathway is active. Moreover, GSK3 inhibition protects against neuronal death caused by L-BMAA.

    Topics: Amino Acids, Diamino; Apoptosis; Cell Line, Tumor; Cyanobacteria Toxins; Glycogen Synthase Kinase 3; Humans; Lysophospholipids; Necrosis; Neurons; Neuroprotective Agents; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction; Sphingosine

2015
Inhibition of sphingosine 1-phosphate receptor 2 protects against renal ischemia-reperfusion injury.
    Journal of the American Society of Nephrology : JASN, 2012, Volume: 23, Issue:2

    Activation of the sphingosine 1-phosphate receptor 1 (S1P(1)R) protects against renal ischemia-reperfusion (IR) injury and inflammation, but the role of other members of this receptor family in modulating renal IR injury is unknown. We found that a selective S1P(2)R antagonist protected against renal IR injury in a dose-dependent manner. Consistent with this observation, both S1P(2)R-deficient mice and wild-type mice treated with S1P(2)R small interfering RNA had reduced renal injury after IR. In contrast, a selective S1P(2)R agonist exacerbated renal IR injury. The S1P(2)R antagonist increased sphingosine kinase-1 (SK1) expression via Rho kinase signaling in renal proximal tubules; the S1P(2)R agonist decreased SK1. S1P(2)R antagonism failed to protect the kidneys of SK1-deficient mice or wild-type mice pretreated with an SK1 inhibitor or an S1P(1)R antagonist, suggesting that the renoprotection conferred by S1P(2)R antagonism results from pathways involving activation of S1P(1)R by SK1. In cultured human proximal tubule (HK-2) cells, the S1P(2)R antagonist selectively upregulated SK1 and attenuated both H(2)O(2)-induced necrosis and TNF-α/cycloheximide-induced apoptosis; the S1P(2)R agonist had the opposite effects. In addition, increased nuclear hypoxia inducible factor-1α was critical in mediating the renoprotective effects of S1P(2)R inhibition. Finally, induction of SK1 and S1P(2)R in response to renal IR and S1P(2)R antagonism occurred selectively in renal proximal tubule cells but not in renal endothelial cells. Taken together, these data suggest that S1P(2)R may be a therapeutic target to attenuate the effects of renal IR injury.

    Topics: Animals; Apoptosis; Hypoxia-Inducible Factor 1, alpha Subunit; Kidney; Kidney Tubules; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Necrosis; Receptors, Lysosphingolipid; Reperfusion Injury; rho-Associated Kinases; RNA, Messenger; Small-Conductance Calcium-Activated Potassium Channels; Sphingosine; Sphingosine-1-Phosphate Receptors

2012
Involvement of mitochondria on neuroprotective effect of sphingosine-1-phosphate in cell death in an in vitro model of brain ischemia.
    Neuroscience letters, 2010, Feb-12, Volume: 470, Issue:2

    Sphingosine-1-phosphate (S1P) has been demonstrated to be an important regulator of cell death and survival. Although it has been suggested that the sphingolipid may act as a neuroprotector in the cell apoptosis induced by traumatic brain injury, the mechanisms involved in this action are unknown. In this study, the relationship between S1P and neuroprotective effect was studied in an in vitro model of ischemia, maintaining SH-SY5Y human neuroblastoma cells under oxygen-glucose deprivation (OGD). When cells were treated with 1 microM S1P simultaneously with OGD and recovery, cell viability increases in a dose-response manner. S1P treatment reduces significantly both necrosis and apoptosis cell death. On the other hand, the treatment with specific PKC epsilon (V1-2), prevents S1P protective effect of OGD/recovery-induced necrosis. Moreover, S1P treatment provokes the translocation of PKC epsilon to the mitochondria. From these results, it is reasonable to assume that S1P protection from necrosis is mediated by PKC epsilon. We also studied the action of S1P on mitochondrial inner membrane potential and mitochondrial Ca(2+) levels during ischemia. In this regard, we must point out that S1P treatment reduces the OGD-induced membrane depolarization and also reduces the increase of Ca(2+) in mitochondria during OGD. Results also indicate that mitochondria from OGD treated cells have significantly less ability to resist swelling on Ca(2+) loading than those obtained in presence of oxygen and glucose. Nevertheless, when S1P was added, this resistance increases considerably. These findings suggest that S1P may have a potential role as a neuroprotective agent in brain injury.

    Topics: Biological Transport, Active; Brain Ischemia; Calcium; Cell Death; Cell Hypoxia; Cell Line, Tumor; Cell Survival; Cytosol; Glucose; Humans; Lysophospholipids; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Swelling; Necrosis; Oxygen; Protein Kinase C-epsilon; Sphingosine; Time Factors

2010
Isoflurane protects human kidney proximal tubule cells against necrosis via sphingosine kinase and sphingosine-1-phosphate generation.
    American journal of nephrology, 2010, Volume: 31, Issue:4

    We previously showed that the inhalational anesthetic isoflurane protects against renal ischemia reperfusion injury in part via sphingosine kinase (SK)-mediated synthesis of sphingosine-1-phosphate (S1P). In this study, we tested the hypothesis that isoflurane directly targets renal proximal tubule cells via SK activation, S1P synthesis and activation of S1P receptors to initiate cytoprotective signaling.. Isoflurane-mediated phosphorylation of extracellular signal-regulated kinase (ERK) and Akt and induction of HSP70 in human kidney proximal tubule (HK-2) cells were inhibited by dimethylsphingosine (DMS), an SK inhibitor, and VPC23019, an S1P(1/3) receptor selective antagonist, in HK-2 cells. A selective S1P(1) receptor agonist, SEW2781, mimicked isoflurane-induced phosphorylation of ERK and Akt and induction of HSP70. Moreover, isoflurane-mediated protection against H(2)O(2)-induced necrosis of HK-2 cells was significantly attenuated by an S1P(1/3) receptor antagonist, VPC23019, and by SK inhibitors DMS or 4-[[4- (4-chlorophenyl)-2-thiazolyl]amino]phenol. Finally, overexpression of the SK1 enzyme in HK-2 cells protected against H(2)O(2)-induced necrosis.. Collectively, our study demonstrates that S1P released via isoflurane-mediated SK1 stimulation produces direct anti-necrotic effects probably via S1P(1) receptor-mediated cytoprotective signaling (ERK/Akt phosphorylation and HSP70 induction) in HK-2 cells. Our findings may help to unravel the cellular signaling pathways of volatile anesthetic-mediated renal protection and lead to new therapeutic applications of volatile anesthetics during the perioperative period.

    Topics: Anesthetics, Inhalation; Cells, Cultured; Humans; Isoflurane; Kidney Tubules, Proximal; Lysophospholipids; Necrosis; Phosphotransferases (Alcohol Group Acceptor); Sphingosine

2010
FTY720 induces necrotic cell death and autophagy in ovarian cancer cells: a protective role of autophagy.
    Autophagy, 2010, Volume: 6, Issue:8

    FTY720, a sphingosine analog, is a novel immunosuppressant currently undergoing multiple clinical trials for the prevention of organ transplant rejection and treatment of various autoimmune diseases. Recent studies indicate an additional cytotoxic effect of FTY720 and its preclinical efficacy in a variety of cancer models, yet the underlying mechanisms remain unclear. We demonstrate here for the first time that FTY720 exhibits a potent, dose- and time-dependent cytotoxic effect in human ovarian cancer cells, even in the cells that are resistant to cisplatin, a commonly prescribed chemotherapeutic drug for treatment of ovarian cancer. In contrast to the previously reported cytotoxicity of FTY720 in many other cancer cell types, FTY720 kills ovarian cancer cells independent of caspase 3 activity and induces cellular swelling and cytoplasmic vacuolization with evident features of necrotic cell death. Furthermore, the presence of autophagic hallmarks, including an increased number of autophagosomes and the formation and accumulation of LC3-II, are observed in FTY720-treated cells before cell death. FTY720 treatment enhances autophagic flux as reflected in the increased LC3 turnover and p62 degradation. Notably, blockade of autophagy by either specific chemical inhibitors or siRNAs targeting Beclin 1 or LC3 resulted in aggravated necrotic cell death in response to FTY720, suggesting that FTY720-induced autophagy plays a self-protective role against its own cytotoxic effect. Thus, our findings not only demonstrate a new death pathway underlying the cytotoxic effect of FTY720, but also suggest that targeting autophagy could augment the anticancer potency, providing the framework for further development of FTY720 as a new chemotherapeutic agent for ovarian cancer treatment.

    Topics: Apoptosis; Autophagy; Caspases; Cell Line, Tumor; Cisplatin; Cytoprotection; Drug Screening Assays, Antitumor; Female; Fingolimod Hydrochloride; Humans; Inhibitory Concentration 50; Lysophospholipids; Necrosis; Ovarian Neoplasms; Propylene Glycols; Signal Transduction; Sphingosine

2010
The sphingosine 1-phosphate receptor S1P2 triggers hepatic wound healing.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2007, Volume: 21, Issue:9

    Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid produced by sphingosine kinase (SphK1 and 2). We previously showed that S1P receptors (S1P1, S1P2, and S1P3) are expressed in hepatic myofibroblasts (hMF), a population of cells that triggers matrix remodeling during liver injury. Here we investigated the function of these receptors in the wound healing response to acute liver injury elicited by carbon tetrachloride, a process that associates hepatocyte proliferation and matrix remodeling. Acute liver injury was associated with the induction of S1P2, S1P3, SphK1, and SphK2 mRNAs and increased SphK activity, with no change in S1P1 expression. Necrosis, inflammation, and hepatocyte regeneration were similar in S1P2-/- and wild-type (WT) mice. However, compared with WT mice, S1P2-/- mice displayed reduced accumulation of hMF, as shown by lower induction of smooth muscle alpha-actin mRNA and lower induction of TIMP-1, TGF-beta1, and PDGF-BB mRNAs, overall reflecting reduced activation of remodeling in response to liver injury. The wound healing response was similar in S1P3-/- and WT mice. In vitro, S1P enhanced proliferation of cultured WT hMF, and PDGF-BB further enhanced the mitogenic effect of S1P. In keeping with these findings, PDGF-BB up-regulated S1P2 and SphK1 mRNAs, increased SphK activity, and S1P2 induced PDGF-BB mRNA. These effects were blunted in S1P2-/- cells, and S1P2-/- hMF exhibited reduced mitogenic and comitogenic responses to S1P. These results unravel a novel major role of S1P2 in the wound healing response to acute liver injury by a mechanism involving enhanced proliferation of hMF.

    Topics: Acute Disease; Animals; Becaplermin; Carbon Tetrachloride Poisoning; Cell Division; Cells, Cultured; Chemical and Drug Induced Liver Injury; DNA Replication; Enzyme Induction; Extracellular Matrix; Fibroblasts; Gene Expression Regulation; Liver Regeneration; Lysophospholipids; Mice; Mice, Inbred C57BL; Mice, Knockout; Myoblasts, Smooth Muscle; Necrosis; Phosphotransferases (Alcohol Group Acceptor); Platelet-Derived Growth Factor; Proliferating Cell Nuclear Antigen; Proto-Oncogene Proteins c-sis; Receptors, Lysosphingolipid; Sphingosine; Sphingosine-1-Phosphate Receptors; Tissue Inhibitor of Metalloproteinase-1; Transforming Growth Factor beta1

2007
Isoflurane mediates protection from renal ischemia-reperfusion injury via sphingosine kinase and sphingosine-1-phosphate-dependent pathways.
    American journal of physiology. Renal physiology, 2007, Volume: 293, Issue:6

    The inhalational anesthetic isoflurane has been shown to protect against renal ischemia-reperfusion (IR) injury. Previous studies demonstrated that isoflurane modulates sphingolipid metabolism in renal proximal tubule cells. We sought to determine whether isoflurane stimulates sphingosine kinase (SK) activity and synthesis of sphingosine-1-phosphate (S1P) in renal proximal tubule cells to mediate renal protection via the S1P signaling pathway. Isoflurane anesthesia reduced the degree of renal failure and necrosis in a murine model of renal IR injury. This protection with isoflurane was reversed by SK inhibitors (DMS and SKI-II) as well as an S1P(1) receptor antagonist (VPC23019). In addition, mice deficient in SK1 enzyme were not protected from IR injury with isoflurane. SK activity as well as SK1 mRNA expression increased in both cultured human proximal tubule cells (HK-2) and mouse kidneys after exposure to isoflurane. Finally, isoflurane increased the generation of S1P in HK-2 cells. Taken together, our findings indicate that isoflurane activates SK in renal tubule cells and initiates S1P-->S1P(1) receptor signaling to mediate the renal protective effects. Our findings may help to unravel the cellular signaling pathways of volatile anesthetic-mediated renal protection and lead to new therapeutic applications of inhalational anesthetics during the perioperative period.

    Topics: Anesthetics, Inhalation; Animals; Cell Line; Creatinine; Enzyme Inhibitors; Humans; Isoflurane; Kidney Diseases; Kidney Tubules; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Necrosis; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid; Reperfusion Injury; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Sphingosine

2007
Ceramide alters endothelial cell permeability by a nonapoptotic mechanism.
    British journal of pharmacology, 2005, Volume: 145, Issue:1

    Ceramide is a lipid second messenger that was recently identified as mediator of pulmonary edema in vivo. Here, we investigated the effect of ceramide on the permeability of confluent endothelial cell monolayers. In monolayers of bovine pulmonary artery and human microvascular pulmonary endothelial cells, incubation with C6-ceramide for 3 h elevated permeability in a concentration-dependent manner, whereas dihydroceramide was without effect. After 3 h of incubation with ceramide, we found no signs of necrosis (release of lactate dehydrogenase, loss of thiazylyl blue reduction) or apoptosis (ssDNA, caspase-8 activity). The increased endothelial permeability in response to ceramide was attenuated by the Ser/Thr protein kinase inhibitors K252a, K252b and H-7, as well as by the phosphatidylinositol-specific phospholipase C inhibitor L108. Since in some systems sphingosine-1-phosphate (S1P) acts antagonistic to ceramide, the effect of S1P was studied. S1P transiently increased endothelial cell resistance, whether it was given together with ceramide or 90 min thereafter. These data provide a novel example of the antagonism between S1P and ceramide. Our findings further suggest that ceramide alters vascular permeability by activation of pathways dependent on unidentified phospholipase C and Ser/Thr kinase isoenzymes.

    Topics: Animals; Apoptosis; Cattle; Cell Membrane Permeability; Cells, Cultured; Ceramides; Dose-Response Relationship, Drug; Endothelial Cells; Endothelium, Vascular; Enzyme Inhibitors; Lysophospholipids; Necrosis; Sphingosine

2005
1Alpha,25-dihydroxyvitamin D3 protects human keratinocytes from apoptosis by the formation of sphingosine-1-phosphate.
    The Journal of investigative dermatology, 2001, Volume: 117, Issue:5

    Owing to its ability to induce growth arrest and differentiation of keratinocytes, 1alpha,25-dihydroxyvitamin D3 and its analogs are useful for the treatment of hyperproliferative skin diseases, such as psoriasis vulgaris. It has been implicated that the 1alpha,25-dihydroxyvitamin D3-induced differentiation of keratinocytes is mediated, at least in part, by the formation of ceramides; however, ceramides have also been identified to induce apoptosis in many cells, including keratinocytes. Therefore, it was of interest to investigate the influence of 1alpha,25-dihydroxyvitamin D3 on apoptosis in keratinocytes. Most interestingly, physiological concentrations of 1alpha,25-dihydroxyvitamin D3 did not induce apoptosis in keratinocytes, despite the formation of ceramides. Moreover, 1alpha,25-dihydroxyvitamin D3 appeared cytoprotective and made keratinocytes resistant to apoptosis induced by ceramides, ultraviolet irradiation, or tumor necrosis factor-alpha. The cytoprotective effect was accompanied by the formation of the sphingolipid breakdown product sphingosine-1-phosphate, which prevented apoptosis in analogy to 1alpha,25-dihydroxyvitamin D3. The effect of 1alpha,25-dihydroxyvitamin D3 was specific as the almost inactive precursor cholecalciferol neither induced sphingosine-1-phosphate formation nor prevented cells from apoptosis. Besides this, the cytoprotective aptitude of 1alpha,25-dihydroxyvitamin D3 was completely abolished by the sphingosine kinase inhibitor N,N-dimethylsphingosine, which blocked sphingosine-1-phosphate formation. Moreover, sphingosine-1-phosphate was able to restore the cytoprotective effect of 1alpha,25-dihydroxyvitamin D3 in the presence of N,N-dimethylsphingosine. Taken together, here we report for the first time that 1alpha,25-dihydroxyvitamin D3 protects keratinocytes from apoptosis and additionally this cytoprotection is mediated via the formation of sphingosine-1-phosphate.

    Topics: Apoptosis; Calcitriol; Cell Division; Cell Survival; Cells, Cultured; Ceramides; Cytoprotection; Humans; Hydroxycholecalciferols; Keratinocytes; Lysophospholipids; Necrosis; Phosphotransferases (Alcohol Group Acceptor); Proto-Oncogene Proteins c-bcl-2; Sphingosine; Tumor Necrosis Factor-alpha; Ultraviolet Rays

2001