sphingosine-1-phosphate and Metabolic-Syndrome

sphingosine-1-phosphate has been researched along with Metabolic-Syndrome* in 9 studies

Reviews

3 review(s) available for sphingosine-1-phosphate and Metabolic-Syndrome

ArticleYear
Altered HDL metabolism in metabolic disorders: insights into the therapeutic potential of HDL.
    Clinical science (London, England : 1979), 2019, 11-15, Volume: 133, Issue:21

    Metabolic disorders are associated with an increased risk of cardiovascular disease (CVD), and are commonly characterized by a low plasma level of high-density lipoprotein cholesterol (HDL-C). Although cholesterol lowering medications reduce CVD risk in these patients, they often remain at increased risk of CVD. Therapeutic strategies that raise HDL-C levels and improve HDL function are a potential treatment option for reducing residual CVD risk in these individuals. Over the past decade, understanding of the metabolism and cardioprotective functions of HDLs has improved, with preclinical and clinical studies both indicating that the ability of HDLs to mediate reverse cholesterol transport, inhibit inflammation and reduce oxidation is impaired in metabolic disorders. These cardioprotective effects of HDLs are supported by the outcomes of epidemiological, cell and animal studies, but have not been confirmed in several recent clinical outcome trials of HDL-raising agents. Recent studies suggest that HDL function may be clinically more important than plasma levels of HDL-C. However, at least some of the cardioprotective functions of HDLs are lost in acute coronary syndrome and stable coronary artery disease patients. HDL dysfunction is also associated with metabolic abnormalities. This review is concerned with the impact of metabolic abnormalities, including dyslipidemia, obesity and Type 2 diabetes, on the metabolism and cardioprotective functions of HDLs.

    Topics: Animals; Anthropometry; Diabetes Mellitus, Type 2; Dyslipidemias; Humans; Hyperglycemia; Inflammation; Insulin Resistance; Lipoproteins, HDL; Lysophospholipids; Metabolic Syndrome; Obesity; Oxidative Stress; Sphingosine

2019
Sphingosine kinase and sphingosine-1-phosphate in liver pathobiology.
    Critical reviews in biochemistry and molecular biology, 2017, Volume: 52, Issue:5

    Over 20 years ago, sphingosine-1-phosphate (S1P) was discovered to be a bioactive signaling molecule. Subsequent studies later identified two related kinases, sphingosine kinase 1 and 2, which are responsible for the phosphorylation of sphingosine to S1P. Many stimuli increase sphingosine kinase activity and S1P production and secretion. Outside the cell, S1P can bind to and activate five S1P-specific G protein-coupled receptors (S1PR1-5) to regulate many important cellular and physiological processes in an autocrine or paracrine manner. S1P is found in high concentrations in the blood where it functions to control vascular integrity and trafficking of lymphocytes. Obesity increases blood S1P levels in humans and mice. With the world wide increase in obesity linked to consumption of high-fat, high-sugar diets, S1P is emerging as an accomplice in liver pathobiology, including acute liver failure, metabolic syndrome, control of blood lipid and glucose homeostasis, nonalcoholic fatty liver disease, and liver fibrosis. Here, we review recent research on the importance of sphingosine kinases, S1P, and S1PRs in liver pathobiology, with a focus on exciting insights for new therapeutic modalities that target S1P signaling axes for a variety of liver diseases.

    Topics: Animals; Fatty Liver; Humans; Liver; Liver Diseases; Liver Failure; Lysophospholipids; Metabolic Syndrome; Phosphotransferases (Alcohol Group Acceptor); Sphingosine

2017
Sphingosine 1-phosphate in metabolic syndrome (Review).
    International journal of molecular medicine, 2016, Volume: 38, Issue:4

    Metabolic syndrome (MetS), a clustering of components, is closely associated with the development and prognosis of cardiovascular disease and diabetes. Sphingosine 1-phosphate (S1P) is a lysophospholipid with paracrine and autocrine effects, which is associated with obesity, insulin resistance, hyperglycemia, dyslipidemia and hypertension through extracellular and intracellular signals to achieve a variety of biological functions. However, there is controversy regarding the role of S1P in MetS; the specific role played by S1P remains unclear. It ameliorates abnormal energy metabolism and deviant adipogenesis and mediates inflammation in obesity. Despite the fact that sphingosine kinase (SphK)2/S1P increases the glucose‑stimulated insulin secretion of β-cells, more evidence showed that activation of the SphK1/S1P/S1P2R pathway inhibited the feedback loop of insulin secretion and sensitivity. The majority of S1P1R activation improves diabetes whereas S1P2R activation worsens the condition. In hyperlipidemia, S1P binds to high-density lipoprotein, low‑density lipoprotein and very low-density lipoprotein exerting different effects. Moreover, low concentrations of S1P lead to vasodilation whereas high concentrations of S1P result in vasocontraction of isolated arterioles. This review discusses the means by which different SphKs, S1P concentrations or S1P receptor subtypes results to diverse result in MetS, and then examines the role of S1P in MetS.

    Topics: Animals; Humans; Lysophospholipids; Metabolic Syndrome; Models, Biological; Signal Transduction; Sphingosine

2016

Other Studies

6 other study(ies) available for sphingosine-1-phosphate and Metabolic-Syndrome

ArticleYear
Impairment of the Ability of HDL From Patients With Metabolic Syndrome but Without Diabetes Mellitus to Activate eNOS: Correction by S1P Enrichment.
    Arteriosclerosis, thrombosis, and vascular biology, 2017, Volume: 37, Issue:5

    High-density lipoprotein (HDL) from nondiabetic patients with metabolic syndrome (MetS) displays abnormalities in their lipidome, such as triglyceride enrichment and sphingosine-1-phosphate depletion. We hypothesized that these abnormalities could impair the ability of HDL to stimulate endothelial nitric oxide synthase (eNOS).. We provide evidence that the activation of eNOS by HDL is decreased in MetS patients before the appearance of diabetes mellitus and that sphingosine-1-phosphate depletion of HDL is the main factor responsible for this defect. This has important consequences on the impairment of HDL functionality and antiatherogenic properties in these patients.

    Topics: Adult; Aged; Case-Control Studies; Cells, Cultured; Diabetes Mellitus; Disease Progression; Enzyme Activation; Female; Human Umbilical Vein Endothelial Cells; Humans; Lipoproteins, HDL; Lysophospholipids; Male; Metabolic Syndrome; Middle Aged; Nitric Oxide Synthase Type III; Phosphorylation; Proto-Oncogene Proteins c-akt; Sphingosine

2017
Increased Levels of Sphingosylphosphorylcholine (SPC) in Plasma of Metabolic Syndrome Patients.
    PloS one, 2015, Volume: 10, Issue:10

    Recent developments in lipid mass spectrometry enable extensive lipid class and species analysis in metabolic disorders such as diabesity and metabolic syndrome. The minor plasma lipid class sphingosylphosphorylcholine (SPC) was identified as a ligand for lipid sensitive G-protein coupled receptors playing a key role in cell growth, differentiation, motility, calcium signaling, tissue remodeling, vascular diseases and cancer. However, information about its role in diabesity patients is sparse. In this study, we analyzed plasma lipid species in patients at risk for diabesity and the metabolic syndrome and compared them with healthy controls. Our data show that SPC is significantly increased in plasma samples from metabolic syndrome patients but not in plasma from patients at risk for diabesity. Detailed SPC species analysis showed that the observed increase is due to a significant increase in all detected SPC subspecies. Moreover, a strong positive correlation is observed between total SPC and individual SPC species with both body mass index and the acute phase low grade inflammation marker soluble CD163 (sCD163). Collectively, our study provides new information on SPC plasma levels in metabolic syndrome and suggests new avenues for investigation.

    Topics: Biomarkers; Female; Humans; Inflammation; Lipids; Lysophospholipids; Male; Metabolic Syndrome; Middle Aged; Obesity; Phosphorylcholine; Risk Factors; Sphingosine; Tetraspanin 30

2015
Identification of sphingolipid metabolites that induce obesity via misregulation of appetite, caloric intake and fat storage in Drosophila.
    PLoS genetics, 2013, Volume: 9, Issue:12

    Obesity is defined by excessive lipid accumulation. However, the active mechanistic roles that lipids play in its progression are not understood. Accumulation of ceramide, the metabolic hub of sphingolipid metabolism, has been associated with metabolic syndrome and obesity in humans and model systems. Here, we use Drosophila genetic manipulations to cause accumulation or depletion of ceramide and sphingosine-1-phosphate (S1P) intermediates. Sphingolipidomic profiles were characterized across mutants for various sphingolipid metabolic genes using liquid chromatography electrospray ionization tandem mass spectroscopy. Biochemical assays and microscopy were used to assess classic hallmarks of obesity including elevated fat stores, increased body weight, resistance to starvation induced death, increased adiposity, and fat cell hypertrophy. Multiple behavioral assays were used to assess appetite, caloric intake, meal size and meal frequency. Additionally, we utilized DNA microarrays to profile differential gene expression between these flies, which mapped to changes in lipid metabolic pathways. Our results show that accumulation of ceramides is sufficient to induce obesity phenotypes by two distinct mechanisms: 1) Dihydroceramide (C14:0) and ceramide diene (C14:2) accumulation lowered fat store mobilization by reducing adipokinetic hormone- producing cell functionality and 2) Modulating the S1P: ceramide (C14:1) ratio suppressed postprandial satiety via the hindgut-specific neuropeptide like receptor dNepYr, resulting in caloric intake-dependent obesity.

    Topics: Adipose Tissue; Adiposity; Animals; Appetite; Ceramides; Chromatography, Liquid; Disease Models, Animal; Drosophila melanogaster; Energy Intake; Humans; Lysophospholipids; Metabolic Syndrome; Mutation; Obesity; Oligonucleotide Array Sequence Analysis; Spectrometry, Mass, Electrospray Ionization; Sphingosine

2013
Serum sphingolipids and inflammatory mediators in adolescents at risk for metabolic syndrome.
    Endocrine, 2012, Volume: 41, Issue:3

    The purpose of this study was to determine low-grade inflammation associated with obesity that is mediated partially by TNF-α, an adipocytokine which stimulates sphingomyelinase activity in adipocytes. Circulating ceramide (Cer) and sphingosine 1-phosphate (S1P) are elevated in genetically obese (ob/ob) mice. We aimed to determine whether serum sphingolipid concentrations correlate with measures of obesity, insulin resistance, and lipid profiles in overweight versus lean adolescents. This cross-sectional study recruited 30 healthy overweight (body mass index, BMI ≥ 85%) and 15 lean (BMI 10-84%) adolescents. Anthropometric measurements and fasting blood samples were collected at one clinic visit. Serum glucose, insulin, and fasting lipid profiles were measured. Serum adipocytokine concentrations were measured by ELISA or colorimetric assay and sphingolipids were measured by HPLC-mass spectrometry. Between group differences in serum sphingolipid concentrations were assessed. Correlations between sphingolipid concentrations and (i) body mass index, (ii) calculated homeostasis model assessment of insulin resistance (HOMA-IR), (iii) adipocytokines, and (iv) lipoproteins were determined. The results showed that significant differences in HOMA-IR (4.5 ± 3.2 vs. 1.2 ± 0.7), free fatty acids (0.8 ± 0.3 mmol/l vs. 0.4 ± 0.3 mmol/l), and adiponectin (6.4 ± 3.8 vs. 12.6 ± 9.9 μg/ml) were seen between groups (overweight vs. lean). There were significant correlations between Cer and TNF-α (r = 0.429), S1P and TNF-α (r = 0.288), Cer and adiponectin (r = 0.321), Cer:S1P and adiponectin (r = 0.324), Cer and HOMA-IR (r = 0.307), and Cer:S1P and LDL cholesterol (r = 0.453); these associations persisted after adjustment for BMI Z-score, sex, and Tanner stage. We concluded that elevated sphingolipid concentrations correlate with TNF-α, adiponectin, lipoprotein profiles, and HOMA-IR. Ceramide is associated with atherogenic lipid profiles and the development of insulin resistance in obese adolescents, similar to adults.

    Topics: Adipokines; Adiponectin; Adolescent; Body Mass Index; Ceramides; Cholesterol, LDL; Cross-Sectional Studies; Fatty Acids, Nonesterified; Female; Humans; Inflammation Mediators; Insulin Resistance; Lysophospholipids; Male; Metabolic Syndrome; New York; Obesity; Risk; Sphingolipids; Sphingosine; Tumor Necrosis Factor-alpha

2012
Role of S-1-P receptors and human vascular smooth muscle cell migration in diabetes and metabolic syndrome.
    The Journal of surgical research, 2012, Volume: 177, Issue:2

    Sphingosine-1-phosphate (S-1-P) is a bioactive sphingolipid released from activated platelets that stimulates migration of vascular smooth muscle cells (VSMC) in vitro. S-1-P is associated with oxidized low-density lipoprotein (oxLDL) and is important in vessel remodeling. S-1-P will activate multiple G protein-coupled receptors (S-1-PR 1 to 5), which can regulate multiple cellular functions, including cell migration. The aim of this study is to examine the role of S-1-PR signaling during smooth muscle cell migration in response to S-1-P.. Human VSMCs were cultured in vitro. Expression of S-1-PR 1 to 5 was determined in conditions mirroring diabetes (40 mM glucose) and metabolic syndrome (25 mM glucose with 20 μM linoleic acid and 20 μM oleic acid). Linear wound and Boyden microchemotaxis assays of migration were performed in the presence of S-1-P with and without siRNA against S-1-PR 1 to 5. Assays were performed for activation of ERK1/2, p38(MAPK) and JNK.. Human VSMCs express S-1-PR1, S-1-PR2, and S-1-PR3. There was no significant expression of S-1-PR4 and S-1-PR5. The expression of S-1-PR1 and S-1-PR3 is enhanced under high glucose conditions and metabolic syndrome conditions. Migration of VSMC in response to S-1-P is enhanced 2-fold by diabetes and 4-fold by metabolic syndrome. In diabetes, S-1-PR1 expression is enhanced, while S-1-PR2 and S-1-PR3 expression are both maintained. In metabolic syndrome, S-1-PR1 and 3 expressions are enhanced and that of S-1-PR2 is reduced. siRNA to S-1-PR1 results in a 2-fold reduction in S-1-P-mediated cell migration under all conditions. siRNA to S-1-PR2 enhanced cell migration only under normal conditions, while siRNA S-1-PR3 decreased migration in metabolic syndrome only. Down-regulation of S-1-PR1 reduced ERK1/2 activation in response to S-1-P, while that of S-1-PR2 had no effect under normal conditions. In diabetes, down-regulation of S-1-PR1 reduced activation of all three MAPKs. In metabolic syndrome, down-regulation of S-1-PR1 and S-1-PR3 reduced activation of all three MAPKs.. S-1-PR 1, 2, and 3 regulate human VSMC migration and their expression level and function are modulated by conditions simulating diabetes and metabolic syndrome.

    Topics: Cell Migration Assays; Cells, Cultured; Diabetes Mellitus; Humans; Lysophospholipids; MAP Kinase Signaling System; Metabolic Syndrome; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Receptors, Lysosphingolipid; Sphingosine

2012
Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome.
    American journal of physiology. Endocrinology and metabolism, 2009, Volume: 297, Issue:1

    Although obesity is associated with multiple features of the metabolic syndrome (insulin resistance, leptin resistance, hepatic steatosis, chronic inflammation, etc.), the molecular changes that promote these conditions are not completely understood. Here, we tested the hypothesis that elevated ceramide biosynthesis contributes to the pathogenesis of obesity and the metabolic syndrome. Chronic treatment for 8 wk of genetically obese (ob/ob), and, high-fat diet-induced obese (DIO) mice with myriocin, an inhibitor of de novo ceramide synthesis, decreased circulating ceramides. Decreased ceramide was associated with reduced weight, enhanced metabolism and energy expenditure, decreased hepatic steatosis, and improved glucose hemostasis via enhancement of insulin signaling in the liver and muscle. Inhibition of de novo ceramide biosynthesis decreased adipose expression of suppressor of cytokine signaling-3 (SOCS-3) and induced adipose uncoupling protein-3 (UCP3). Moreover, ceramide directly induced SOCS-3 and inhibited UCP3 mRNA in cultured adipocytes suggesting a direct role for ceramide in regulation of metabolism and energy expenditure. Inhibition of de novo ceramide synthesis had no effect on adipose tumor necrosis factor-alpha (TNF-alpha) expression but dramatically reduced adipose plasminogen activator inhibitor-1 (PAI-1) and monocyte chemoattactant protein-1 (MCP-1). This study highlights a novel role for ceramide biosynthesis in body weight regulation, energy expenditure, and the metabolic syndrome.

    Topics: Adipose Tissue; Animals; Body Weight; Ceramides; Energy Metabolism; Fatty Acids, Monounsaturated; Ion Channels; Lysophospholipids; Male; Metabolic Syndrome; Mice; Mice, Inbred C57BL; Mitochondrial Proteins; Obesity; Organ Size; Sphingolipids; Sphingosine; Suppressor of Cytokine Signaling 3 Protein; Suppressor of Cytokine Signaling Proteins; Uncoupling Protein 3

2009