sphingosine-1-phosphate has been researched along with Memory-Disorders* in 3 studies
3 other study(ies) available for sphingosine-1-phosphate and Memory-Disorders
Article | Year |
---|---|
T-Cell Accumulation in the Hypertensive Brain: A Role for Sphingosine-1-Phosphate-Mediated Chemotaxis.
Hypertension is considered the major modifiable risk factor for the development of cognitive impairment. Because increased blood pressure is often accompanied by an activation of the immune system, the concept of neuro-inflammation gained increasing attention in the field of hypertension-associated neurodegeneration. Particularly, hypertension-associated elevated circulating T-lymphocyte populations and target organ damage spurred the interest to understanding mechanisms leading to inflammation-associated brain damage during hypertension. The present study describes sphingosine-1-phosphate (S1P) as major contributor to T-cell chemotaxis to the brain during hypertension-associated neuro-inflammation and cognitive impairment. Using Western blotting, flow cytometry and mass spectrometry approaches, we show that hypertension stimulates a sphingosine kinase 1 (SphK1)-dependent increase of cerebral S1P concentrations in a mouse model of angiotensin II (AngII)-induced hypertension. The development of a distinct S1P gradient between circulating blood and brain tissue associates to elevated CD3+ T-cell numbers in the brain. Inhibition of S1P₁-guided T-cell chemotaxis with the S1P receptor modulator FTY720 protects from augmentation of brain CD3 expression and the development of memory deficits in hypertensive WT mice. In conclusion, our data highlight a new approach to the understanding of hypertension-associated inflammation in degenerative processes of the brain during disease progression. Topics: Angiotensin II; Animals; Brain; Chemokines; Chemotaxis; Cognition Disorders; Female; Hypertension; Lysophospholipids; Male; Memory Disorders; Mice, Inbred C57BL; Mice, Transgenic; Models, Biological; Phosphotransferases (Alcohol Group Acceptor); Sphingosine; T-Lymphocytes | 2019 |
Modulation of sphingosine 1-phosphate (S1P) attenuates spatial learning and memory impairments in the valproic acid rat model of autism.
Autism spectrum disorders (ASD) are a set of pervasive neurodevelopmental disorders that manifest in early childhood, and it is growing up to be a major cause of disability in children. However, the etiology and treatment of ASD are not well understood. In our previous study, we found that serum levels of sphingosine 1-phosphate (S1P) were increased significantly in children with autism, indicating that S1P levels may be involved in ASD.. The objective of this study was to identify a link between increased levels of S1P and neurobehavioral changes in autism.. We utilized a valproic acid (VPA) -induced rat model of autism to evaluate the levels of S1P and the expression of sphingosine kinase (SphK), a key enzyme for S1P production, in serum and hippocampal tissue. Furthermore, we assessed cognitive functional changes and histopathological and neurochemical alterations in VPA-exposed rats after SphK blockade to explore the possible link between increased levels of S1P and neurobehavioral changes in autism.. We found that SphK2 and S1P are upregulated in hippocampal tissue from VPA-exposed rats, while pharmacological inhibition of SphK reduced S1P levels, attenuated spatial learning and memory impairments, increased the expression of phosphorylated CaMKII and CREB and autophagy-related proteins, inhibited cytochrome c release, decreased the expression of apoptosis related proteins, and protected against neuronal loss in the hippocampus.. We have demonstrated that an increased level of SphK2/S1P is involved in the spatial learning and memory impairments of autism, and this signaling pathway represents a novel therapeutic target and direction for future studies. Topics: Analysis of Variance; Animals; Apoptosis; Autistic Disorder; Autophagy; Biomarkers; Disease Models, Animal; Hippocampus; Humans; Lysophospholipids; Male; Memory Disorders; Neurons; Phosphotransferases (Alcohol Group Acceptor); Rats; Rats, Wistar; Signal Transduction; Spatial Learning; Sphingosine; Thiazoles; Valproic Acid | 2018 |
Sphingosin-1-phosphate Receptor 1: a Potential Target to Inhibit Neuroinflammation and Restore the Sphingosin-1-phosphate Metabolism.
Recent evidence suggests that an extreme shift may occur in sphingosine metabolism in neuroinflammatory contexts. Sphingosine 1-phosphate (S1P)-metabolizing enzymes (SMEs) regulate the level of S1P. We recently found that FTY720, a S1P analogue, and SEW2871, a selective S1P receptor 1 (S1P1) agonist, provide protection against neural damage and memory deficit in amyloid beta (Aβ)-injected animals. This study aimed to evaluate the effects of these two analogues on the expression of SMEs as well as their anti-inflammatory roles.. Rats were treated with intracerebral lipopolysaccharide (LPS) or Aβ. Memory impairment was assessed by Morris water maze and the effects of drugs on SMEs as well as inflammatory markers, TNF- α and COX-II, were determined by immunoblotting.. Aβ and LPS differentially altered the expression profile of SMEs. In Aβ-injected animals, FTY720 and SEW2871 treatments exerted anti-inflammatory effects and restored the expression profile of SMEs, in parallel to our previous findings. In LPS animals however, in spite of anti-inflammatory effects of the two analogues, only FTY720 restored the levels of SMEs and prevented memory deficit.. The observed ameliorating effects of FTY720 and SEW7821 can be partly attributed to the interruption of the vicious cycle of abnormal S1P metabolism and neuro-inflammation. The close imitation of the FTY720 effects by SW2871 in Aβ-induced neuro-inflammation may highlight the attractive role of S1P1 as a potential target to restore S1P metabolism and inhibit inflammatory processes. Topics: Amyloid beta-Peptides; Animals; Anti-Inflammatory Agents; Cyclooxygenase 2; Fingolimod Hydrochloride; Inflammation; Lipopolysaccharides; Lysophospholipids; Male; Maze Learning; Memory Disorders; Oxadiazoles; Rats; Rats, Wistar; Receptors, Lysosphingolipid; Sphingosine; Thiophenes; Tumor Necrosis Factor-alpha | 2015 |