sphingosine-1-phosphate has been researched along with Kidney-Failure--Chronic* in 3 studies
1 review(s) available for sphingosine-1-phosphate and Kidney-Failure--Chronic
Article | Year |
---|---|
Targeting the sphingosine kinase/sphingosine 1-phosphate pathway to treat chronic inflammatory kidney diseases.
Chronic kidney diseases including glomerulonephritis are often accompanied by acute or chronic inflammation that leads to an increase in extracellular matrix (ECM) production and subsequent glomerulosclerosis. Glomerulonephritis is one of the leading causes for end-stage renal failure with high morbidity and mortality, and there are still only a limited number of drugs for treatment available. In this MiniReview, we discuss the possibility of targeting sphingolipids, specifically the sphingosine kinase 1 (SphK1) and sphingosine 1-phosphate (S1P) pathway, as new therapeutic strategy for the treatment of glomerulonephritis, as this pathway was demonstrated to be dysregulated under disease conditions. Sphingosine 1-phosphate is a multifunctional signalling molecule, which was shown to influence several hallmarks of glomerulonephritis including mesangial cell proliferation, renal inflammation and fibrosis. Most importantly, the site of action of S1P determines the final effect on disease progression. Concerning renal fibrosis, extracellular S1P acts pro-fibrotic via activation of cell surface S1P receptors, whereas intracellular S1P was shown to attenuate the fibrotic response. Interference with S1P signalling by treatment with FTY720, an S1P receptor modulator, resulted in beneficial effects in various animal models of chronic kidney diseases. Also, sonepcizumab, a monoclonal anti-S1P antibody that neutralizes extracellular S1P, and a S1P-degrading recombinant S1P lyase are promising new strategies for the treatment of glomerulonephritis. In summary, especially due to the bifunctionality of S1P, the SphK1/S1P pathway provides multiple target sites for the treatment of chronic kidney diseases. Topics: Animals; Cell Proliferation; Disease Models, Animal; Fibrosis; Fingolimod Hydrochloride; Glomerulonephritis; Humans; Inflammation; Kidney Failure, Chronic; Lysophospholipids; Molecular Targeted Therapy; Phosphotransferases (Alcohol Group Acceptor); Propylene Glycols; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine | 2014 |
2 other study(ies) available for sphingosine-1-phosphate and Kidney-Failure--Chronic
Article | Year |
---|---|
High-density lipoprotein from end-stage renal disease patients exhibits superior cardioprotection and increase in sphingosine-1-phosphate.
Chronic kidney disease (CKD) exacerbates the risk of death due to cardiovascular disease (CVD). Modifications to blood lipid metabolism which manifest as increases in circulating triglycerides and reductions in high-density lipoprotein (HDL) cholesterol are thought to contribute to increased risk. In CKD patients, higher HDL cholesterol levels were not associated with reduced mortality risk. Recent research has revealed numerous mechanisms by which HDL could favourably influence CVD risk. In this study, we compared plasma levels of sphingosine-1-phosphate (S1P), HDL-associated S1P (HDL-S1P) and HDL-mediated protection against oxidative stress between CKD and control patients.. High-density lipoprotein was individually isolated from 20 CKD patients and 20 controls. Plasma S1P, apolipoprotein M (apoM) concentrations, HDL-S1P content and the capacity of HDL to protect cardiomyocytes against doxorubicin-induced oxidative stress in vitro were measured.. Chronic kidney disease patients showed a typical profile with significant reductions in plasma HDL cholesterol and albumin and an increase in triglycerides and pro-inflammatory cytokines (TNF-alpha and IL-6). Unexpectedly, HDL-S1P content (P = .001) and HDL cardioprotective capacity (P = .034) were increased significantly in CKD patients. Linear regression analysis of which factors could influence HDL-S1P content showed an independent, negative and positive association with plasma albumin and apoM levels, respectively.. The novel and unexpected observation in this study is that uremic HDL is more effective than control HDL for protecting cardiomyocytes against oxidative stress. It is explained by its higher S1P content which we previously demonstrated to be the determinant of HDL-mediated cardioprotective capacity. Interestingly, lower concentrations of albumin in CKD are associated with higher HDL-S1P. Topics: Analysis of Variance; Apolipoproteins M; Cardiotonic Agents; Cells, Cultured; Doxorubicin; Female; Humans; Interleukin-6; Kidney Failure, Chronic; Lipoproteins, HDL; Lysophospholipids; Male; Middle Aged; Myocytes, Cardiac; Oxidative Stress; Serum Albumin; Sphingosine; Triglycerides; Tumor Necrosis Factor-alpha | 2018 |
Unsupervised analysis of combined lipid and coagulation data reveals coagulopathy subtypes among dialysis patients.
Hemodialysis (HD) and peritoneal dialysis (PD) are the primary means of managing end stage renal disease (ESRD). However, these treatment modalities are associated with the onset of coagulation abnormalities. Effective management of coagulation risk among these patients requires the identification of surrogate markers that provide an early indication of the coagulation abnormalities. The role of sphingolipids in the manifestation and prediction of coagulation abnormalities among dialysis patients have never been investigated. Herein, we report the first instance of an in depth investigation into the sphingolipid changes among ESRD patients undergoing HD and PD. The results reveal distinct differences in terms of perturbations to specific sphingolipid biosynthetic pathways that are highly dependent on the treatment modality. Our studies also demonstrated strong correlation between specific sphingolipids and coagulation parameters, such as HexCer(d18:1/26:0) and maximal amplitude (MA), SM(d18:1/24:1) and tissue factor pathway inhibitor, and sphingosine 1-phosphate d18:1 and FX (Spearman ρ of 0.93, 0.89, and -0.89, respectively). Furthermore, our study revealed the potential for using HexCer(d18:1/22:0), HexCer(d18:1/24:0), and HexCer(d18:1/26:0) (r Topics: Adult; Biomarkers; Blood Coagulation; Blood Coagulation Disorders; Chromatography, High Pressure Liquid; Female; Humans; Kidney Failure, Chronic; Lipid Metabolism; Lysophospholipids; Male; Middle Aged; Peritoneal Dialysis; Renal Dialysis; Renal Insufficiency, Chronic; Sphingolipids; Sphingomyelins; Sphingosine | 2017 |