sphingosine-1-phosphate has been researched along with Hypertension--Pulmonary* in 8 studies
1 review(s) available for sphingosine-1-phosphate and Hypertension--Pulmonary
Article | Year |
---|---|
Iron and Sphingolipids as Common Players of (Mal)Adaptation to Hypoxia in Pulmonary Diseases.
Hypoxia, or lack of oxygen, can occur in both physiological (high altitude) and pathological conditions (respiratory diseases). In this narrative review, we introduce high altitude pulmonary edema (HAPE), acute respiratory distress syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD), and Cystic Fibrosis (CF) as examples of maladaptation to hypoxia, and highlight some of the potential mechanisms influencing the prognosis of the affected patients. Among the specific pathways modulated in response to hypoxia, iron metabolism has been widely explored in recent years. Recent evidence emphasizes hepcidin as highly involved in the compensatory response to hypoxia in healthy subjects. A less investigated field in the adaptation to hypoxia is the sphingolipid (SPL) metabolism, especially through Ceramide and sphingosine 1 phosphate. Both individually and in concert, iron and SPL are active players of the (mal)adaptation to physiological hypoxia, which can result in the pathological HAPE. Our aim is to identify some pathways and/or markers involved in the physiological adaptation to low atmospheric pressures (high altitudes) that could be involved in pathological adaptation to hypoxia as it occurs in pulmonary inflammatory diseases. Hepcidin, Cer, S1P, and their interplay in hypoxia are raising growing interest both as prognostic factors and therapeutical targets. Topics: Adaptation, Physiological; Altitude Sickness; Ceramides; Cystic Fibrosis; Hepcidins; Humans; Hypertension, Pulmonary; Hypoxia; Iron; Lysophospholipids; Pulmonary Disease, Chronic Obstructive; Respiratory Distress Syndrome; Sphingolipids; Sphingosine | 2020 |
7 other study(ies) available for sphingosine-1-phosphate and Hypertension--Pulmonary
Article | Year |
---|---|
Dysregulated zinc and sphingosine-1-phosphate signaling in pulmonary hypertension: Potential effects by targeting of bone morphogenetic protein receptor type 2 in pulmonary microvessels.
Recently identified molecular targets in pulmonary artery hypertension (PAH) include sphingosine-1-phosphate (S1P) and zinc transporter ZIP12 signaling. This study sought to determine linkages between these pathways, and with BMPR2 signaling. Lung tissues from a rat model of monocrotaline-induced PAH and therapeutic treatment with bone marrow-derived endothelial-like progenitor cells transduced to overexpress BMPR2 were studied. Multifluorescence quantitative confocal microscopy (MQCM) was applied for analysis of protein expression and localization of markers of vascular remodeling (αSMA and BMPR2), parameters of zinc homeostasis (zinc transporter SLC39A/ZIP family members 1, 10, 12 and 14; and metallothionein MT3) and S1P extracellular signaling (SPHK1, SPNS2, S1P receptor isoforms 1, 2, 3, 5) in 20-200 µm pulmonary microvessels. ZIP12 expression in whole lung tissue lysates was assessed by western blot. Spearman nonparametric correlations between MQCM readouts and hemodynamic parameters, Fulton index (FI), and right ventricular systolic pressure (RVSP) were measured. In line with PAH status, pulmonary microvessels in monocrotaline-treated animals demonstrated significant (p < .05, n = 6 per group) upregulation of αSMA (twofold) and downregulation of BMPR2 (20%). Upregulated ZIP12 (92%), MT3 (57.7%), S1PR2 (54.8%), and S1PR3 (30.3%) were also observed. Significant positive and negative correlations were demonstrated between parameters of zinc homeostasis (ZIP12, MT3), S1P signaling (S1PRs, SPNS2), and vascular remodeling (αSMA, FI, RVSP). MQCM and western blot analysis showed that monocrotaline-induced ZIP12 upregulation could be partially negated by BMPR2-targeted therapy. Our results indicate that altered zinc transport/storage and S1P signaling in the monocrotaline-induced PAH rat model are linked to each other, and could be alleviated by BMPR2-targeted therapy. Topics: Animals; Bone Morphogenetic Protein Receptors, Type II; Cation Transport Proteins; Cells, Cultured; Disease Models, Animal; Hypertension, Pulmonary; Lung; Lysophospholipids; Male; Microvessels; Monocrotaline; Myocytes, Smooth Muscle; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Vascular Remodeling; Zinc | 2021 |
Sphingosine Kinases as Druggable Targets.
There is substantial evidence that the enzymes, sphingosine kinase 1 and 2, which catalyse the formation of the bioactive lipid sphingosine 1-phosphate, are involved in pathophysiological processes. In this chapter, we appraise the evidence that both enzymes are druggable and describe how isoform-specific inhibitors can be developed based on the plasticity of the sphingosine-binding site. This is contextualised with the effect of sphingosine kinase inhibitors in cancer, pulmonary hypertension, neurodegeneration, inflammation and sickling. Topics: Anemia, Sickle Cell; Binding Sites; Enzyme Inhibitors; Humans; Hypertension, Pulmonary; Inflammation; Lysophospholipids; Neoplasms; Neurodegenerative Diseases; Phosphotransferases (Alcohol Group Acceptor); Sphingosine | 2020 |
The Therapeutic Effects of Human Mesenchymal Stem Cells Primed with Sphingosine-1 Phosphate on Pulmonary Artery Hypertension.
Stem cell (SC) therapy has become a potential treatment modality for pulmonary artery hypertension (PAH), but the efficacy of human SC and priming effects have not yet been established. The mobilization and homing of hematopoietic stem cells (HSCs) are modulated by priming factors that include a bioactive lipid, sphingosine-1-phosphate (S1P), which stimulates CXCR4 receptor kinase signaling. Here, we show that priming human mesenchymal stem cells (MSCs) with S1P enhances their therapeutic efficacy in PAH. Human MSCs, similar to HSCs, showed stronger chemoattraction to S1P in transwell assays. Concomitantly, MSCs treated with 0.2 μM S1P showed increased phosphorylation of both MAPKp42/44 and AKT protein compared with nonprimed MSCs. Furthermore, S1P-primed MSCs potentiated colony forming unit-fibroblast, anti-inflammatory, and angiogenic activities of MSCs in culture. In a PAH animal model induced by subcutaneously injected monocrotaline, administration of human cord blood-derived MSCs (hCB-MSCs) or S1P-primed cells significantly attenuated the elevated right ventricular systolic pressure. Notably, S1P-primed CB-MSCs, but not unprimed hCB-MSCs, also elicited a significant reduction in the right ventricular weight ratio and pulmonary vascular wall thickness. S1P-primed MSCs enhanced the expression of several genes responsible for stem cell trafficking and angiogenesis, increasing the density of blood vessels in the damaged lungs. Thus, this study demonstrates that human MSCs have potential utility for the treatment of PAH, and that S1P priming increases the effects of SC therapy by enhancing cardiac and vascular remodeling. By optimizing this protocol in future studies, SC therapy might form a basis for clinical trials to treat human PAH. Topics: Animals; Antimicrobial Cationic Peptides; Blood Pressure; Cathelicidins; Cell Movement; Cell Proliferation; Cell- and Tissue-Based Therapy; Cells, Cultured; Humans; Hypertension, Pulmonary; Lysophospholipids; Male; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Mitogen-Activated Protein Kinase 1; Monocrotaline; Neovascularization, Physiologic; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Rats, Inbred Lew; Signal Transduction; Sphingosine; Transcription Factors; Vascular Remodeling | 2015 |
A Biochemical Approach to Understand the Pathogenesis of Advanced Pulmonary Arterial Hypertension: Metabolomic Profiles of Arginine, Sphingosine-1-Phosphate, and Heme of Human Lung.
Pulmonary arterial hypertension (PAH) is a vascular disease characterized by persistent precapillary pulmonary hypertension (PH), leading to progressive right heart failure and premature death. The pathological mechanisms underlying this condition remain elusive. Analysis of global metabolomics from lung tissue of patients with PAH (n = 8) and control lung tissue (n = 8) leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted arginine pathways with increased Nitric oxide (NO) and decreased arginine. Our results also showed specific metabolic pathways and genetic profiles with increased Sphingosine-1-phosphate (S1P) metabolites as well as increased Heme metabolites with altered oxidative pathways in the advanced stage of the human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to the vascular remodeling in severe pulmonary hypertension. Profiling metabolomic alterations of the PAH lung has provided a new understanding of the pathogenic mechanisms of PAH, which benefits therapeutic targeting to specific metabolic pathways involved in the progression of PAH. Topics: Adult; Arginine; Female; Heme; Humans; Hypertension, Pulmonary; Lung; Lysophospholipids; Male; Metabolic Networks and Pathways; Metabolomics; Middle Aged; Nitric Oxide; Sphingosine; Vascular Remodeling | 2015 |
The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension.
Sphingosine kinases (SphKs) 1 and 2 regulate the synthesis of the bioactive sphingolipid sphingosine-1-phosphate (S1P), an important lipid mediator that promotes cell proliferation, migration, and angiogenesis.. We aimed to examine whether SphKs and their product, S1P, play a role in the development of pulmonary arterial hypertension (PAH).. SphK1(-/-), SphK2(-/-), and S1P lyase heterozygous (Sgpl1(+/-)) mice, a pharmacologic SphK inhibitor (SKI2), and a S1P receptor 2 (S1PR2) antagonist (JTE013) were used in rodent models of hypoxia-mediated pulmonary hypertension (HPH). S1P levels in lung tissues from patients with PAH and pulmonary arteries (PAs) from rodent models of HPH were measured.. mRNA and protein levels of SphK1, but not SphK2, were significantly increased in the lungs and isolated PA smooth muscle cells (PASMCs) from patients with PAH, and in lungs of experimental rodent models of HPH. S1P levels were increased in lungs of patients with PAH and PAs from rodent models of HPH. Unlike SphK2(-/-) mice, SphK1(-/-) mice were protected against HPH, whereas Sgpl1(+/-) mice were more susceptible to HPH. Pharmacologic SphK1 and S1PR2 inhibition prevented the development of HPH in rodent models of HPH. Overexpression of SphK1 and stimulation with S1P potentially via ligation of S1PR2 promoted PASMC proliferation in vitro, whereas SphK1 deficiency inhibited PASMC proliferation.. The SphK1/S1P axis is a novel pathway in PAH that promotes PASMC proliferation, a major contributor to pulmonary vascular remodeling. Our results suggest that this pathway is a potential therapeutic target in PAH. Topics: Animals; Humans; Hypertension, Pulmonary; Lysophospholipids; Male; Mice; Phosphotransferases (Alcohol Group Acceptor); Rats; Rats, Sprague-Dawley; Signal Transduction; Sphingosine; Tissue Culture Techniques | 2014 |
Is pulmonary hypertension a metabolic disease?
Topics: Animals; Humans; Hypertension, Pulmonary; Lysophospholipids; Male; Phosphotransferases (Alcohol Group Acceptor); Sphingosine | 2014 |
Role of sphingosine kinase 1 in allergen-induced pulmonary vascular remodeling and hyperresponsiveness.
Immunologic processes might contribute to the pathogenesis of pulmonary arterial hypertension (PAH), a fatal condition characterized by progressive pulmonary arterial remodeling, increased pulmonary vascular resistance, and right ventricular failure. Experimental allergen-driven lung inflammation evoked morphologic and functional vascular changes that resembled those observed in patients with PAH. Sphingosine kinase 1 (SphK1) is the main pulmonary contributor to sphingosine-1-phosphate (S1P) synthesis, a modulator of immune and vascular functions.. We sought to investigate the role of SphK1 in allergen-induced lung inflammation.. SphK1-deficient mice and C57Bl/6 littermates (wild-type [WT] animals) were subjected to acute or chronic allergen exposure.. After 4 weeks of systemic ovalbumin sensitization and local airway challenge, airway responsiveness increased less in SphK1(-/-) compared with WT mice, whereas pulmonary vascular responsiveness was greatly increased and did not differ between strains. Acute lung inflammation led to an increase in eosinophils and mRNA expression for S1P phosphatase 2 and S1P lyase in lungs of WT but not SphK1(-/-) mice. After repetitive allergen exposure for 8 weeks, airway responsiveness was not augmented in SphK1(-/-) or WT mice, but pulmonary vascular responsiveness was increased in both strains, with significantly higher vascular responsiveness in SphK1(-/-) mice compared with that seen in WT mice. Increased vascular responsiveness was accompanied by remodeling of the small and intra-acinar arteries.. : The data support a role for SphK1 and S1P in allergen-induced airway inflammation. However, SphK1 deficiency increased pulmonary vascular hyperresponsiveness, which is a component of PAH pathobiology. Moreover, we show for the first time the dissociation between inflammation-induced remodeling of the airways and pulmonary vasculature. Topics: Acute Disease; Allergens; Animals; Bronchial Hyperreactivity; Chronic Disease; Cytokines; Hypertension, Pulmonary; Lung; Lysophospholipids; Mice; Mice, Inbred C57BL; Mice, Knockout; Ovalbumin; Phosphotransferases (Alcohol Group Acceptor); Pulmonary Artery; RNA, Messenger; Sphingosine | 2009 |