sphingosine-1-phosphate and Granuloma

sphingosine-1-phosphate has been researched along with Granuloma* in 2 studies

Other Studies

2 other study(ies) available for sphingosine-1-phosphate and Granuloma

ArticleYear
Sphingosine-1-Phosphate Facilitates Skin Wound Healing by Increasing Angiogenesis and Inflammatory Cell Recruitment with Less Scar Formation.
    International journal of molecular sciences, 2019, Jul-10, Volume: 20, Issue:14

    Wound healing starts with the recruitment of inflammatory cells that secrete wound-related factors. This step is followed by fibroblast activation and tissue construction. Sphingosine-1-phosphate (S1P) is a lipid mediator that promotes angiogenesis, cell proliferation, and attracts immune cells. We investigated the roles of S1P in skin wound healing by altering the expression of its biogenic enzyme, sphingosine kinase-1 (SphK1). The murine excisional wound splinting model was used. Sphingosine kinase-1 (SphK1) was highly expressed in murine wounds and that SphK1

    Topics: Animals; Biomarkers; Cell Proliferation; Cicatrix; Disease Models, Animal; Gene Expression; Granuloma; Inflammation; Lysophospholipids; Mice; Mice, Knockout; Neovascularization, Physiologic; Phosphotransferases (Alcohol Group Acceptor); Skin; Sphingosine; Sphingosine-1-Phosphate Receptors; Wound Healing

2019
The Granuloma Response Controlling Cryptococcosis in Mice Depends on the Sphingosine Kinase 1-Sphingosine 1-Phosphate Pathway.
    Infection and immunity, 2015, Volume: 83, Issue:7

    Cryptococcus neoformans is a fungal pathogen that causes pulmonary infections, which may progress into life-threatening meningitis. In commonly used mouse models of C. neoformans infections, fungal cells are not contained in the lungs, resulting in dissemination to the brain. We have previously reported the generation of an engineered C. neoformans strain (C. neoformans Δgcs1) which can be contained in lung granulomas in the mouse model and have shown that granuloma formation is dependent upon the enzyme sphingosine kinase 1 (SK1) and its product, sphingosine 1-phosphate (S1P). In this study, we have used four mouse models, CBA/J and C57BL6/J (both immunocompetent), Tgε26 (an isogenic strain of strain CBA/J lacking T and NK cells), and SK(-/-) (an isogenic strain of strain C57BL6/J lacking SK1), to investigate how the granulomatous response and SK1-S1P pathway are interrelated during C. neoformans infections. S1P and monocyte chemotactic protein-1 (MCP-1) levels were significantly elevated in the bronchoalveolar lavage fluid of all mice infected with C. neoformans Δgcs1 but not in mice infected with the C. neoformans wild type. SK1(-/-) mice did not show elevated levels of S1P or MCP-1. Primary neutrophils isolated from SK1(-/-) mice showed impaired antifungal activity that could be restored by the addition of extracellular S1P. In addition, high levels of tumor necrosis factor alpha were found in the mice infected with C. neoformans Δgcs1 in comparison to the levels found in mice infected with the C. neoformans wild type, and their levels were also dependent on the SK1-S1P pathway. Taken together, these results suggest that the SK1-S1P pathway promotes host defense against C. neoformans infections by regulating cytokine levels, promoting extracellular killing by phagocytes, and generating a granulomatous response.

    Topics: Animals; Bronchoalveolar Lavage Fluid; Cryptococcosis; Cryptococcus neoformans; Disease Models, Animal; Female; Gene Deletion; Granuloma; Lung; Lysophospholipids; Male; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Knockout; Phosphotransferases (Alcohol Group Acceptor); Sphingosine

2015