sphingosine-1-phosphate and Cryptococcosis

sphingosine-1-phosphate has been researched along with Cryptococcosis* in 2 studies

Other Studies

2 other study(ies) available for sphingosine-1-phosphate and Cryptococcosis

ArticleYear
The Granuloma Response Controlling Cryptococcosis in Mice Depends on the Sphingosine Kinase 1-Sphingosine 1-Phosphate Pathway.
    Infection and immunity, 2015, Volume: 83, Issue:7

    Cryptococcus neoformans is a fungal pathogen that causes pulmonary infections, which may progress into life-threatening meningitis. In commonly used mouse models of C. neoformans infections, fungal cells are not contained in the lungs, resulting in dissemination to the brain. We have previously reported the generation of an engineered C. neoformans strain (C. neoformans Δgcs1) which can be contained in lung granulomas in the mouse model and have shown that granuloma formation is dependent upon the enzyme sphingosine kinase 1 (SK1) and its product, sphingosine 1-phosphate (S1P). In this study, we have used four mouse models, CBA/J and C57BL6/J (both immunocompetent), Tgε26 (an isogenic strain of strain CBA/J lacking T and NK cells), and SK(-/-) (an isogenic strain of strain C57BL6/J lacking SK1), to investigate how the granulomatous response and SK1-S1P pathway are interrelated during C. neoformans infections. S1P and monocyte chemotactic protein-1 (MCP-1) levels were significantly elevated in the bronchoalveolar lavage fluid of all mice infected with C. neoformans Δgcs1 but not in mice infected with the C. neoformans wild type. SK1(-/-) mice did not show elevated levels of S1P or MCP-1. Primary neutrophils isolated from SK1(-/-) mice showed impaired antifungal activity that could be restored by the addition of extracellular S1P. In addition, high levels of tumor necrosis factor alpha were found in the mice infected with C. neoformans Δgcs1 in comparison to the levels found in mice infected with the C. neoformans wild type, and their levels were also dependent on the SK1-S1P pathway. Taken together, these results suggest that the SK1-S1P pathway promotes host defense against C. neoformans infections by regulating cytokine levels, promoting extracellular killing by phagocytes, and generating a granulomatous response.

    Topics: Animals; Bronchoalveolar Lavage Fluid; Cryptococcosis; Cryptococcus neoformans; Disease Models, Animal; Female; Gene Deletion; Granuloma; Lung; Lysophospholipids; Male; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Knockout; Phosphotransferases (Alcohol Group Acceptor); Sphingosine

2015
Role of sphingosine-1-phosphate (S1P) and S1P receptor 2 in the phagocytosis of Cryptococcus neoformans by alveolar macrophages.
    Microbiology (Reading, England), 2011, Volume: 157, Issue:Pt 5

    The pathogenic fungus Cryptococcus neoformans is a major cause of morbidity and mortality in immunocompromised individuals. Infection of the human host occurs through inhalation of infectious propagules following environmental exposure. In the lung, C. neoformans can reside in the extracellular environment of the alveolar spaces or, upon phagocytosis, it can survive and grow intracellularly within alveolar macrophages (AMs). In previous studies, we found that sphingosine kinase 1 (SK1) influenced the intracellular residency of C. neoformans within AMs. Therefore, with this study we aimed to examine the role of the SK1 lipid product, sphingosine-1-phosphate (S1P), in the AMs-C. neoformans interaction. It was found that extracellular S1P enhances the phagocytosis of C. neoformans by AMs. Using both genetic and pharmacological approaches we further show that extracellular S1P exerts its effect on the phagocytosis of C. neoformans by AMs through S1P receptor 2 (S1P2). Interestingly, loss of S1P2 caused a dramatic decrease in the mRNA levels of Fcγ receptors I (FcγRI), -II and -III. In conclusion, our data suggest that extracellular S1P increases antibody-mediated phagocytosis through S1P2 by regulating the expression of the phagocytic Fcγ receptors.

    Topics: Animals; Cells, Cultured; Cryptococcosis; Cryptococcus neoformans; Female; Fungal Proteins; Humans; Lysophospholipids; Macrophages, Alveolar; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Phagocytosis; Receptors, IgG; Receptors, Lysosphingolipid; Sphingosine

2011