sphingosine-1-phosphate and Cognition-Disorders

sphingosine-1-phosphate has been researched along with Cognition-Disorders* in 2 studies

Other Studies

2 other study(ies) available for sphingosine-1-phosphate and Cognition-Disorders

ArticleYear
T-Cell Accumulation in the Hypertensive Brain: A Role for Sphingosine-1-Phosphate-Mediated Chemotaxis.
    International journal of molecular sciences, 2019, Jan-28, Volume: 20, Issue:3

    Hypertension is considered the major modifiable risk factor for the development of cognitive impairment. Because increased blood pressure is often accompanied by an activation of the immune system, the concept of neuro-inflammation gained increasing attention in the field of hypertension-associated neurodegeneration. Particularly, hypertension-associated elevated circulating T-lymphocyte populations and target organ damage spurred the interest to understanding mechanisms leading to inflammation-associated brain damage during hypertension. The present study describes sphingosine-1-phosphate (S1P) as major contributor to T-cell chemotaxis to the brain during hypertension-associated neuro-inflammation and cognitive impairment. Using Western blotting, flow cytometry and mass spectrometry approaches, we show that hypertension stimulates a sphingosine kinase 1 (SphK1)-dependent increase of cerebral S1P concentrations in a mouse model of angiotensin II (AngII)-induced hypertension. The development of a distinct S1P gradient between circulating blood and brain tissue associates to elevated CD3+ T-cell numbers in the brain. Inhibition of S1P₁-guided T-cell chemotaxis with the S1P receptor modulator FTY720 protects from augmentation of brain CD3 expression and the development of memory deficits in hypertensive WT mice. In conclusion, our data highlight a new approach to the understanding of hypertension-associated inflammation in degenerative processes of the brain during disease progression.

    Topics: Angiotensin II; Animals; Brain; Chemokines; Chemotaxis; Cognition Disorders; Female; Hypertension; Lysophospholipids; Male; Memory Disorders; Mice, Inbred C57BL; Mice, Transgenic; Models, Biological; Phosphotransferases (Alcohol Group Acceptor); Sphingosine; T-Lymphocytes

2019
Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia.
    Brain, behavior, and immunity, 2016, Volume: 52

    Cerebral white matter injury is a leading cause of adverse neurodevelopmental outcome in prematurely born infants involving cognitive deficits in later life. Despite increasing knowledge about the pathophysiology of perinatal brain injury, therapeutic options are limited. In the adult demyelinating disease multiple sclerosis the sphingosine-1-phosphate (S1P) receptor modulating substance fingolimod (FTY720) has beneficial effects. Herein, we evaluated the neuroprotective potential of FTY720 in a neonatal model of oxygen-toxicity, which is associated with hypomyelination and impaired neuro-cognitive outcome. A single dose of FTY720 (1mg/kg) at the onset of neonatal hyperoxia (24h 80% oxygen on postnatal day 6) resulted in improvement of neuro-cognitive development persisting into adulthood. This was associated with reduced microstructural white matter abnormalities 4 months after the insult. In search of the underlying mechanisms potential non-classical (i.e. lymphocyte-independent) pathways were analysed shortly after the insult, comprising modulation of oxidative stress and local inflammatory responses as well as myelination, oligodendrocyte degeneration and maturation. Treatment with FTY720 reduced hyperoxia-induced oxidative stress, microglia activation and associated pro-inflammatory cytokine expression. In vivo and in vitro analyses further revealed that oxygen-induced hypomyelination is restored to control levels, which was accompanied by reduced oligodendrocyte degeneration and enhanced maturation. Furthermore, hyperoxia-induced elevation of S1P receptor 1 (S1P1) protein expression on in vitro cultured oligodendrocyte precursor cells was reduced by activated FTY720 and protection from degeneration is abrogated after selective S1P1 blockade. Finally, FTY720s' classical mode of action (i.e. retention of immune cells within peripheral lymphoid organs) was analysed demonstrating that FTY720 diminished circulating lymphocyte counts independent from hyperoxia. Cerebral immune cell counts remained unchanged by hyperoxia and by FTY720 treatment. Taken together, these results suggest that beneficial effects of FTY720 in neonatal oxygen-induced brain injury may be rather attributed to its anti-oxidative and anti-inflammatory capacity acting in concert with a direct protection of developing oligodendrocytes than to a modulation of peripheral lymphocyte trafficking. Thus, FTY720 might be a potential new therapeutic option for the treatment of neonatal brain in

    Topics: Animals; Animals, Newborn; Brain; Cognition Disorders; Diffusion Magnetic Resonance Imaging; Female; Fingolimod Hydrochloride; Hyperoxia; Lysophospholipids; Male; Microglia; Nerve Fibers, Myelinated; Oligodendroglia; Oxygen; Pregnancy; Random Allocation; Rats; Rats, Wistar; Receptors, Lysosphingolipid; Sphingosine; White Matter

2016