sphingosine-1-phosphate has been researched along with Carcinoma--Hepatocellular* in 21 studies
3 review(s) available for sphingosine-1-phosphate and Carcinoma--Hepatocellular
Article | Year |
---|---|
The role of glucosylceramide and glucosylceramide synthase in liver disease: from bench to bedside - Review.
The cell membrane, which is lipid-rich, is not only a simple mechanical barrier but also an important and complex component of the cell. It also communicates with the external environment. Sphingomyelin is an important class of phospholipids in the membrane that performs many functions. Interest in sphingomyelin-based liposomes, which are a critical component of cell membranes, have become the focus of intense study in recent years. Through additional research, the function of sphingomyelin and its derivatives in diseases can be gradually elucidated. Sphingomyelin consists of ceramide and its derivatives including ceramide-1-phosphate glucosylceramide and sphingosine-1-phosphate. The metabolism of glucosylceramide is regulated by glucosylceramide synthase (EC: 2.4.1.80) which is the key enzyme in the glycosylation of ceramide. The activity of glucosylceramide synthase directly affects the level of glucosylceramide in cells which in turn affects the function of cells and may eventually lead to diseases. Recently, the relationship between glucosylceramide and its metabolic enzymes, with diseases has become a relatively new area of study. The purpose of this paper is to address the relationship between glucosylceramide, glucosylceramide synthase, and their possible association with liver diseases at the theoretical level. Topics: Apoptosis; Carcinoma, Hepatocellular; Cell Membrane; Ceramides; Glucosylceramides; Glucosyltransferases; Hepatocytes; Humans; Liver Cirrhosis; Liver Neoplasms; Lung Injury; Lysophospholipids; Sphingomyelins; Sphingosine | 2020 |
Role of Sphingosine Kinase 1 and Sphingosine-1-Phosphate Axis in Hepatocellular Carcinoma.
Hepatocellular carcinoma (HCC) is primarily diagnosed in the latter stages of disease progression and is the third leading cause of cancer deaths worldwide. Thus, there is a need to find biomarkers of early HCC as well as the development of more effective treatments for the disease. Sphingosine-1-phosphate (S1P) is a pleiotropic lipid signaling molecule produced by two isoforms of sphingosine kinase (SphK1 and SphK2) that is involved in regulation of many aspects of mammalian physiology and pathophysiology, including inflammation, epithelial and endothelial barrier function, cancer, and metastasis, among many others. Abundant evidence indicates that SphK1 and S1P promote cancer progression and metastasis in multiple types of cancers. However, the role of SphK/S1P in HCC is less well studied. Here, we review the current state of knowledge of SphKs and S1P in HCC, including evidence for the correlation of SphK1 expression and S1P levels with progression of HCC and negative outcomes, and discuss how this information could lead to the design of more effective diagnostic and treatment modalities for HCC. Topics: Animals; Carcinoma, Hepatocellular; Liver Neoplasms; Lysophospholipids; Phosphotransferases (Alcohol Group Acceptor); Sphingosine | 2020 |
DNA damage response and sphingolipid signaling in liver diseases.
Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC. Topics: Adaptor Proteins, Signal Transducing; Carcinoma, Hepatocellular; DNA Damage; Hepatitis B; Hepatitis C; Humans; Liver Neoplasms; Lyases; Lysophospholipids; Molecular Targeted Therapy; Non-alcoholic Fatty Liver Disease; Phosphoric Monoester Hydrolases; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Sphingosine | 2016 |
18 other study(ies) available for sphingosine-1-phosphate and Carcinoma--Hepatocellular
Article | Year |
---|---|
Sphingosine-1-phosphate transporter spinster homolog 2 is essential for iron-regulated metastasis of hepatocellular carcinoma.
Iron dyshomeostasis is associated with hepatocellular carcinoma (HCC) development. However, the role of iron in HCC metastasis is unknown. This study aimed to elucidate the underlying mechanisms of iron's enhancement activity on HCC metastasis. In addition to the HCC cell lines and clinical samples in vitro, iron-deficient (ID) mouse models were generated using iron-free diet and transferrin receptor protein knockout, followed by administration of HCC tumors through either orthotopic or ectopic route. Clinical metastatic HCC samples showed significant ID status, accompanied by overexpression of sphingosine-1-phosphate transporter spinster homolog 2 (SPNS2). Mechanistically, ID increased SPNS2 expression, leading to HCC metastasis in both cell cultures and mouse models. ID not only altered the anti-tumor immunity, which was indicated by phenotypes of lymphatic subsets in the liver and lung of tumor-bearing mice, but also promoted HCC metastasis in a cancer cell autonomous manner through the SPNS2. Since germline knockout of globe SPNS2 showed significantly reduced HCC metastasis, we further developed hepatic-targeting recombinant adeno-associated virus vectors to knockdown SPNS2 expression and to inhibit iron-regulated HCC metastasis. Our observation indicates the role of iron in HCC pulmonary metastasis and suggests SPNS2 as a potential therapeutic target for the prevention of HCC pulmonary metastasis. Topics: Animals; Anion Transport Proteins; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Movement; Iron; Liver Neoplasms; Lysophospholipids; Mice; Neoplasm Metastasis; Sphingosine | 2022 |
Sphingosine-1-phosphate promotes tumor development and liver fibrosis in mouse model of congestive hepatopathy.
Chronic liver congestion reflecting right-sided heart failure (RHF), Budd-Chiari syndrome, or Fontan-associated liver disease (FALD) is involved in liver fibrosis and HCC. However, molecular mechanisms of fibrosis and HCC in chronic liver congestion remain poorly understood.. Here, we first demonstrated that chronic liver congestion promoted HCC and metastatic liver tumor growth using murine model of chronic liver congestion by partial inferior vena cava ligation (pIVCL). As the initial step triggering HCC promotion and fibrosis, gut-derived lipopolysaccharide (LPS) appeared to induce LSECs capillarization in mice and in vitro. LSEC capillarization was also confirmed in patients with FALD. Mitogenic factor, sphingosine-1-phosphate (S1P), was increased in congestive liver and expression of sphingosine kinase 1, a major synthetase of S1P, was increased in capillarized LSECs after pIVCL. Inhibition of S1P receptor (S1PR) 1 (Ex26) and S1PR2 (JTE013) mitigated HCC development and liver fibrosis, respectively. Antimicrobial treatment lowered portal blood LPS concentration, LSEC capillarization, and liver S1P concentration accompanied by reduction of HCC development and fibrosis in the congestive liver.. In conclusion, chronic liver congestion promotes HCC development and liver fibrosis by S1P production from LPS-induced capillarized LSECs. Careful treatment of both RHF and liver cancer might be necessary for patients with RHF with primary or metastatic liver cancer. Topics: Animals; Carcinoma, Hepatocellular; Disease Models, Animal; Fibrosis; Heart Failure; Humans; Lipopolysaccharides; Liver Cirrhosis; Liver Neoplasms; Lysophospholipids; Mice; Receptors, Lysosphingolipid; Sphingosine; Vascular Diseases | 2022 |
Sphingosine 1-phosphate lyase facilitates cancer progression through converting sphingolipids to glycerophospholipids.
In addition to potent agonist properties for sphingosine 1-phosphate (S1P) receptors, intracellularly, S1P is an intermediate in metabolic conversion pathway from sphingolipids to glycerolysophospholipids (glyceroLPLs). We hypothesized that this S1P metabolism and its products might possess some novel roles in the pathogenesis of cancer, where S1P lyase (SPL) is a key enzyme.. The mRNA levels of sphingolipid-related and other cancer-related factors were measured in human hepatocellular carcinoma (HCC), colorectal cancer, and esophageal cancer patients' tumours and in their adjacent non-tumour tissues. Phospholipids (PL) and glyceroLPLs were measured by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In-vitro experiments were performed in Colon 26 cell line with modulation of the SPL and GPR55 expressions. Xenograft model was used for determination of the cancer progression and for pharmacological influence.. Besides high SPL levels in human HCC and colon cancer, SPL levels were specifically and positively linked with levels of glyceroLPLs, including lysophosphatidylinositol (LPI). Overexpression of SPL in Colon 26 cells resulted in elevated levels of LPI and lysophosphatidylglycerol (LPG), which are agonists of GPR55. SPL overexpression-enhanced cell proliferation was inhibited by GPR55 silencing. Conversely, inhibition of SPL led to the opposite outcome and reversed by adding LPI, LPG, and metabolites generated during S1P degradation, which is regulated by SPL. The xenograft model results suggested the contribution of SPL and glyceroLPLs to tumour progression depending on levels of SPL and GPR55. Moreover, the pharmacological inhibition of SPL prevented the progression of cancer. The underlying mechanisms for the SPL-mediated cancer progression are the activation of p38 and mitochondrial function through the LPI, LPG-GPR55 axis and the suppression of autophagy in a GPR55-independent manner.. A new metabolic pathway has been proposed here in HCC and colon cancer, SPL converts S1P to glyceroLPLs, mainly to LPI and LPG, and facilitates cancer development. Topics: Carcinoma, Hepatocellular; Chromatography, Liquid; Colonic Neoplasms; Glycerophospholipids; Humans; Liver Neoplasms; Lysophospholipids; RNA, Messenger; Sphingolipids; Sphingosine; Tandem Mass Spectrometry | 2022 |
Sphingosine 1-phosphate regulates proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells via syndecan-1.
Sphingosine 1-phosphate (S1P) plays an important role in hepatocarcinogenesis. We previously demonstrated that S1P induced epithelial-mesenchymal transition of hepatocellular carcinoma (HCC) cells via an MMP-7/Syndecan-1/TGF-β autocrine loop. In the present study, we investigated the regulative role of S1P in cell survival and progression of HCC cells, and tested whether syndecan-1 is required in the S1P action. After transfected with syndecan-1 shRNA, HepG2 and SMMC7721 cells were treated with S1P for 72 h, and then cell proliferation was detected by CCK8 assay, and cell cycle progression and cell apoptosis were detected by flow cytometry. The levels of apoptosis markers including cleaved-Caspase-3 and cleaved-PARP in SMMC7721 cells were examined by western blotting. Results showed that S1P significantly enhanced cell proliferation in HCC cells, which was significantly inhibited by syndecan-1 shRNA. S1P induced the cell proportion in S phase in HCC cells, whereas S1P decreased the proportion of cells in both early and late apoptosis. Syndecan-1 shRNA induced the G2/M arrest in the presence of S1P. In the syndecan-1 shRNA transfected HCC cells, the proportions of late and early apoptotic cells, and levels of cleaved-Caspase-3 and cleaved-PARP were significantly increased in cells with or without S1P treatment. Thus, S1P augments the proportion of cells in S phase of the cell cycle that might translate to enhance HCC cell proliferation and inhibit the cell apoptosis via syndecan-1. Topics: Apoptosis; Carcinoma, Hepatocellular; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Gene Silencing; Hep G2 Cells; Humans; Liver Neoplasms; Lysophospholipids; Sphingosine; Syndecan-1 | 2019 |
S1P Stimulates Proliferation by Upregulating CTGF Expression through S1PR2-Mediated YAP Activation.
Dysregulation of the Hippo pathway in the liver results in overgrowth and eventually tumorigenesis. To date, several upstream mechanisms have been identified that affect the Hippo pathway, which ultimately regulate YAP, the major downstream effector of the pathway. However, upstream regulators of the Hippo pathway in the liver remain poorly defined. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that has been shown to stimulate hepatocellular carcinoma (HCC) cell proliferation, but whether the Hippo pathway is involved in S1P-stimulated HCC cell proliferation remains to be determined. Here it is demonstrated that S1P activates YAP and that the S1P receptor 2 (S1PR2/S1P2) mediates S1P-induced YAP activation in both human and mouse HCC cells. S1P promotes YAP-mediated upregulation of cysteine-rich protein 61 and connective tissue growth factor (CTGF), and stimulates HCC cell proliferation. By using siRNA-mediated knockdown approaches, only CTGF was required for S1P-stimulated cell proliferation. Of note, S1P activates YAP in a MST1/2-independent manner suggesting that the canonical Hippo kinase is not required for S1P-mediated proliferation in liver. The upregulation of CTGF and S1P2 were also observed in liver-specific YAP overexpression transgenic mouse hepatocytes. Moreover, YAP regulated liver differentiation-dependent gene expression by influencing the chromatin binding of HNF4α based on ChIP-seq analysis. Finally, results using gain- and loss-of-function approaches demonstrate that HNF4α negatively regulated S1P-induced CTGF expression. Topics: Adaptor Proteins, Signal Transducing; Animals; Carcinoma, Hepatocellular; Cell Proliferation; Connective Tissue Growth Factor; Gene Expression Regulation, Neoplastic; Hepatocyte Nuclear Factor 4; Hepatocytes; Humans; Liver; Liver Neoplasms; Lysophospholipids; Mice; Mice, Transgenic; Phosphoproteins; Receptors, Lysosphingolipid; RNA, Small Interfering; Sphingosine; Sphingosine-1-Phosphate Receptors; Transcription Factors; YAP-Signaling Proteins | 2018 |
Alkaline ceramidase 3 promotes growth of hepatocellular carcinoma cells via regulating S1P/S1PR2/PI3K/AKT signaling.
Hepatocellular carcinoma (HCC) is one of the cancer types with poor prognosis. To effectively treat HCC, new molecular targets and therapeutic approaches must be identified. Alkaline ceramidase 3 (Acer3) hydrolyzed long-chain unsaturated ceramide to produce free fatty acids and sphingosine. However, whether and how Acer3 modulates progression of HCC remains largely unknown.. Acer3 mRNA levels in different types of human HCC samples or normal tissues were determined from Gene Expression across Normal and Tumor tissue (GENT) database. The expression level of Acer3 in human HCC cell lines were examined by western blot. Overall survival and disease-free survival of HCC patients were determined by Kaplan-Meier analysis. Effects of Acer3 knockdown by lentivirus infection were evaluated on cell growth and apoptosis. The mechanisms involved in HCC cells growth and apoptosis were analyzed by western blot.. In silico analysis of TCGA databases of HCC patients showed that the expression of Acer3 significantly inversely correlates with the overall and disease-free survival of HCC patients. Knockdown expression of Acer3 resulted in decreased cell growth and increased apoptosis. Notably, inhibition of Acer3 resulted in intracellular exhaustion of Sphingosine-1-phosphate (S1P) and inhibited activation of S1PR2/PI3K/AKT signaling. Finally, knockdown of Acer3 induced up-regulation of Bax and down-regulation of Bcl-2.. Our study suggests that Acer3 contributes to HCC propagation, and suggests that inhibition of Acer3 may be novel strategy for treating human HCC. Topics: Alkaline Ceramidase; Apoptosis; Carcinoma, Hepatocellular; Cell Proliferation; Disease-Free Survival; Humans; Kaplan-Meier Estimate; Liver Neoplasms; Lysophospholipids; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors | 2018 |
Sphingosine 1-phosphate (S1P) reduces hepatocyte growth factor-induced migration of hepatocellular carcinoma cells via S1P receptor 2.
A bioactive lipid, sphingosine 1-phosphate (S1P), acts extracellularly as a potent mediator, and is implicated in the progression of various cancers including hepatocellular carcinoma (HCC). S1P exerts its functions by binding to five types of specific receptors, S1P receptor 1 (S1PR1), S1PR2, S1PR3, S1PR4 and S1PR5 on the plasma membrane. However, the exact roles of S1P and each S1PR in HCC cells remain to be clarified. In the present study, we investigated the effect of S1P on the hepatocyte growth factor (HGF)-induced migration of human HCC-derived HuH7 cells, and the involvement of each S1PR. S1P dose-dependently reduced the HGF-induced migration of HuH7 cells. We found that all S1PRs exist in the HuH7 cells. Among each selective agonist for five S1PRs, CYM5520, a selective S1PR2 agonist, significantly suppressed the HGF-induced HuH7 cell migration whereas selective agonists for S1PR1, S1PR3, S1PR4 or S1PR5 failed to affect the migration. The reduction of the HGF-induced migration by S1P was markedly reversed by treatment of JTE013, a selective antagonist for S1PR2, and S1PR2- siRNA. These results strongly suggest that S1P reduces the HGF-induced HCC cell migration via S1PR2. Our findings may provide a novel potential of S1PR2 to therapeutic strategy for metastasis of HCC. Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Movement; Hepatocyte Growth Factor; Humans; Liver Neoplasms; Lysophospholipids; Receptors, Lysosphingolipid; RNA, Small Interfering; Sphingosine | 2018 |
Melatonin prevents deregulation of the sphingosine kinase/sphingosine 1-phosphate signaling pathway in a mouse model of diethylnitrosamine-induced hepatocellular carcinoma.
The sphingosine kinase (SphK)/sphingosine 1-phosphate (S1P) pathway is involved in multiple biological processes, including carcinogenesis. Melatonin shows beneficial effects in cell and animal models of hepatocellular carcinoma, but it is unknown if they are associated with the modulation of the SphK/S1P system, along with different downstream signaling pathways modified in cancer. We investigated the effects of melatonin in mice which received diethylnitrosamine (DEN) (35 mg/kg body weight i.p) once a week for 8 weeks. Melatonin was given at 5 or 10 mg/kg/day i.p. beginning 4 weeks after the onset of DEN administration and ending at the sacrifice time (10, 20, 30, or 40 weeks). Melatonin alleviated the distortion of normal hepatic architecture, lowered the incidence of preneoplastic/neoplastic lesions, and inhibited the expression of proliferative/cell cycle regulatory proteins (Ki67, PCNA, cyclin D1, cyclin E, CDK4, and CDK6). S1P levels and expression of SphK1, SphK2, and S1P receptors (S1PR1/S1PR3) were significantly elevated in DEN-treated mice. However, there was a decreased expression of S1P lyase. These effects were significantly abrogated in a time- and dose-dependent manner by melatonin, which also increased S1PR2 expression. Following DEN treatment, mice exhibited increased phosphorylation of PI3K, AKT, mTOR, STAT3, ERK, and p38, and a higher expression of NF-κB p50 and p65 subunits. Melatonin administration significantly inhibited those changes. Data obtained suggest a contribution of the SphK/S1P system and related signaling pathways to the protective effects of melatonin in hepatocarcinogenesis. Topics: Animals; Blotting, Western; Carcinogens; Carcinoma, Hepatocellular; Diethylnitrosamine; Disease Models, Animal; Immunohistochemistry; Liver Neoplasms; Lysophospholipids; Male; Melatonin; Mice; Mice, Inbred ICR; Phosphotransferases (Alcohol Group Acceptor); Real-Time Polymerase Chain Reaction; Signal Transduction; Sphingosine | 2017 |
Increased mRNA Levels of Sphingosine Kinases and S1P Lyase and Reduced Levels of S1P Were Observed in Hepatocellular Carcinoma in Association with Poorer Differentiation and Earlier Recurrence.
Although sphingosine 1-phosphate (S1P) has been reported to play an important role in cancer pathophysiology, little is known about S1P and hepatocellular carcinoma (HCC). To clarify the relationship between S1P and HCC, 77 patients with HCC who underwent surgical treatment were consecutively enrolled in this study. In addition, S1P and its metabolites were quantitated by LC-MS/MS. The mRNA levels of sphingosine kinases (SKs), which phosphorylate sphingosine to generate S1P, were increased in HCC tissues compared with adjacent non-HCC tissues. Higher mRNA levels of SKs in HCC were associated with poorer differentiation and microvascular invasion, whereas a higher level of SK2 mRNA was a risk factor for intra- and extra-hepatic recurrence. S1P levels, however, were unexpectedly reduced in HCC compared with non-HCC tissues, and increased mRNA levels of S1P lyase (SPL), which degrades S1P, were observed in HCC compared with non-HCC tissues. Higher SPL mRNA levels in HCC were associated with poorer differentiation. Finally, in HCC cell lines, inhibition of the expression of SKs or SPL by siRNA led to reduced proliferation, invasion and migration, whereas overexpression of SKs or SPL enhanced proliferation. In conclusion, increased SK and SPL mRNA expression along with reduced S1P levels were more commonly observed in HCC tissues compared with adjacent non-HCC tissues and were associated with poor differentiation and early recurrence. SPL as well as SKs may be therapeutic targets for HCC treatment. Topics: Aldehyde-Lyases; Carcinoma, Hepatocellular; Cell Differentiation; Cell Line, Tumor; Cell Movement; Cell Proliferation; Gene Expression Regulation, Neoplastic; Humans; Liver Neoplasms; Lysophospholipids; Metabolome; Neoplasm Invasiveness; Neoplasm Recurrence, Local; Phosphotransferases (Alcohol Group Acceptor); Risk Factors; RNA, Messenger; Sphingosine | 2016 |
Serum sphingolipidomic analyses reveal an upregulation of C16-ceramide and sphingosine-1-phosphate in hepatocellular carcinoma.
We have recently shown that major alterations of serum sphingolipid metabolites in chronic liver disease associate significantly with the stage of liver fibrosis in corresponding patients. In the current study we assessed via mass spectrometry serum concentrations of sphingolipid metabolites in a series of 122 patients with hepatocellular carcinoma (HCC) compared to an age- and sex-matched series of 127 patients with cirrhosis. We observed a highly significant upregulation of long and very long chain ceramides (C16-C24) in the serum of patients with HCC as compared to patients with cirrhosis (P < 0.001). Accordingly, dihydro-ceramides, synthetic precursors of ceramides and notably sphingosine, sphingosine-1-phosphate (S1P) and sphinganine-1-phosphate (SA1P) were upregulated in patients with HCC (P < 0.001). Especially the diagnostic accuracy of C16-ceramide and S1P, assessed by receiver operating curve (ROC) analysis, showed a higher area under the curve (AUC) value as compared to alpha fetoprotein (AFP) (0.999 and 0.985 versus 0.823, P < 0.001 respectively). In conclusion, serum levels of sphingolipid metabolites show a significant upregulation in patients with HCC as compared to patients with cirrhosis. Particularly C16-ceramide and S1P may serve as novel diagnostic markers for the identification of HCC in patients with liver diseases. Our data justify further investigations on the role of sphingolipids in HCC. Topics: Adult; Aged; Aged, 80 and over; Biomarkers, Tumor; Carcinoma, Hepatocellular; Ceramides; Female; Humans; Liver Cirrhosis; Liver Neoplasms; Lysophospholipids; Male; Middle Aged; Sphingosine; Up-Regulation | 2016 |
FTY720P inhibits hepatic Na(+)-K(+) ATPase via S1PR2 and PGE2.
Sphingosine-1-phosphate (S1P) was found previously to inhibit Na(+)-K(+) ATPase in HepG2 cells. Whether fingolimod (FTY720), a S1P receptor (S1PR) agonist, similarly inhibits the ATPase is a question that needs to be addressed. The aim of this work was to study the effect of FTY720P, the active form of the drug, on the activity of Na(+)-K(+) ATPase in HepG2 cells and determine its mechanism of action. The activity of the ATPase was assayed by measuring the amount of inorganic phosphate liberated in the presence and the absence of ouabain. FTY720-P (7.5 nmol/L, 15 min) significantly reduced the activity of the ATPase. This effect disappeared completely in the presence of JTE-013, which is a specific blocker of sphingosine-1-phosphate receptor 2 (S1PR2), as well as in the presence of calphostin and indomethacin, which are inhibitors of protein kinase C (PKC) and COX-2, respectively. The effect of FTY720P was mimicked by prostaglandin E2 (PGE2) and PMA, but abrogated by NF-κB inhibition. When NF-κB was inhibited, the effect of exogenous PGE2 still appeared, but that of PMA did not manifest, suggesting that NF-κB is upstream of PGE2 and downstream of PKC. It was concluded that FTY720P activates via S1PR2, PKC, and NF-κB. The latter induces PGE2 generation and inhibits Na(+)-K(+) ATPase. Topics: Blotting, Western; Carcinoma, Hepatocellular; Dinoprostone; Humans; Liver Neoplasms; Lysophospholipids; NF-kappa B; Organophosphates; Protein Kinase C; Receptors, Lysosphingolipid; Sodium-Potassium-Exchanging ATPase; Sphingosine; Sphingosine-1-Phosphate Receptors; Tumor Cells, Cultured | 2016 |
Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-β autocrine loop.
Sphingosine-1-phosphate (S1P) induces epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC). However, its underlying mechanism remains largely unknown. In the present study, we investigated the correlation between S1P and syndecan-1 in HCC, the molecular mechanism involved, as well as their roles in EMT of HCC. Results revealed a high serum S1P level presents in patients with HCC, which positively correlated with the serum syndecan-1 level. A significant inverse correlation existed between S1P1 and syndecan-1 in HCC tissues. S1P elicits activation of the PI3K/AKT signaling pathways via S1P1, which triggers HPSE, leading to increases in expression and activity of MMP-7 and leading to shedding and suppression of syndecan-1. The loss of syndecan-1 causes an increase in TGF-β1 production. The limited chronic increase in TGF-β1 can convert HCC cells into a mesenchymal phenotype via establishing an MMP-7/Syndecan-1/TGF-β autocrine loop. Finally, TGF-β1 and syndecan-1 are essential for S1P-induced epithelial to mesenchymal transition. Taken together, our study demonstrates that S1P induces advanced tumor phenotypes of HCC via establishing an MMP-7/syndecan-1/TGF-β1 autocrine loop, and implicates targetable S1P1-PI3K/AKT-HPSE-MMP-7 signaling axe in HCC metastasis. Topics: Aged; Carcinoma, Hepatocellular; Cell Line, Tumor; Enzyme Inhibitors; Epithelial-Mesenchymal Transition; Female; Gene Expression Regulation, Neoplastic; Hep G2 Cells; Humans; Liver Neoplasms; Lysophospholipids; Male; Matrix Metalloproteinase 7; Middle Aged; Phenotype; Signal Transduction; Sphingosine; Syndecan-1; Transforming Growth Factor beta1 | 2016 |
Immunohistochemical detection of sphingosine-1-phosphate and sphingosine kinase-1 in human tissue samples.
Sphingosine-1-phosphate (S1P) and the enzyme primarily responsible for its production, sphingosine kinase-1 (SphK-1), are thought to be dysregulated in multiple human diseases including cancer, multiple sclerosis (MS), diabetes, neurological diseases, fibrosis, and certain pathologies associated with impaired angiogenesis such as, age-related macular degeneration (AMD). Antibody-based techniques to identify and localize S1P and SphK-1 within cells and tissue specimens represent powerful tools not only to understand the biological role of these molecules but also to validate these unique in-class targets in multiple state diseases. Consequently, the potential applications of these molecules for therapy and diagnostic purposes are currently under investigation. Here, we describe two staining procedures for identification of S1P and SphK-1 in human frozen tissue samples and the challenges encountered in the process of localization in tissue samples of lipid molecules, such as S1P. Topics: Carcinoma, Hepatocellular; Humans; Immunohistochemistry; Liver Neoplasms; Lysophospholipids; Phosphotransferases (Alcohol Group Acceptor); Sphingosine | 2012 |
Antitumor activity of sphingosine kinase 2 inhibitor ABC294640 and sorafenib in hepatocellular carcinoma xenografts.
The balance between the pro-apoptotic lipids ceramide and sphingosine and the pro-survival lipid sphingosine 1-phosphate (S1P) is termed the "sphingosine rheostat". Two isozymes, sphingosine kinase 1 and 2 (SK1 and SK2), are responsible for phosphorylation of pro-apoptotic sphingosine to form pro-survival S1P. We have previously reported the antitumor properties of an SK2 selective inhibitor, ABC294640, alone or in combination with the multikinase inhibitor sorafenib in mouse models of kidney carcinoma and pancreatic adenocarcinoma. Here we evaluated the combined antitumor effects of the aforementioned drug combination in two mouse models of hepatocellular carcinoma. Although combining the SK2 inhibitor, ABC294640, and sorafenib in vitro only afforded additive drug-drug effects, their combined antitumor properties in the mouse model bearing HepG2 cells mirrored effects previously observed in animals bearing kidney carcinoma and pancreatic adenocarcinoma cells. Combining ABC294640 and sorafenib led to a decrease in the levels of phosphorylated ERK in SK-HEP-1 cells, indicating that the antitumor effect of this drug combination is likely mediated through a suppression of the MAPK pathway in hepatocellular models. We also measured levels of S1P in the plasma of mice treated with two different doses of ABC294640 and sorafenib. We found decreases in the levels of S1P in plasma of mice treated daily with 100 mg/kg of ABC294640 for 5 weeks, and this decrease was not affected by co-administration of sorafenib. Taken together, these data support combining ABC294640 and sorafenib in clinical trials in HCC patients. Furthermore, monitoring levels of S1P may provide a pharmacodynamic marker of ABC294640 activity. Topics: Adamantane; Animals; Antineoplastic Agents; Apoptosis; Benzenesulfonates; Blotting, Western; Carcinoma, Hepatocellular; Flow Cytometry; Hep G2 Cells; Humans; Liver Neoplasms; Lysophospholipids; Mice; Mitogen-Activated Protein Kinases; Niacinamide; Phenylurea Compounds; Phosphotransferases (Alcohol Group Acceptor); Pyridines; Sorafenib; Sphingosine; Xenograft Model Antitumor Assays | 2011 |
Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo.
Ceramidases (CDases) play a key role in cancer therapy through enhanced conversion of ceramide into sphingosine 1-phosphate (S1P), but their involvement in hepatocarcinogenesis is unknown. Here, we report that daunorubicin (DNR) activated acid CDase post-transcriptionally in established human (HepG2 cells) or mouse (Hepa1c1c7) hepatoma cell lines as well as in primary cells from murine liver tumors, but not in cultured mouse hepatocytes. Acid CDase silencing by small interfering RNA (siRNA) or pharmacological inhibition with N-oleoylethanolamine (NOE) enhanced the ceramide to S1P balance compared to DNR alone, sensitizing hepatoma cells (HepG2, Hep-3B, SK-Hep and Hepa1c1c7) to DNR-induced cell death. DNR plus NOE or acid CDase siRNA-induced cell death was preceded by ultrastructural changes in mitochondria, stimulation of reactive oxygen species generation, release of Smac/DIABLO and cytochrome c and caspase-3 activation. In addition, in vivo siRNA treatment targeting acid CDase reduced tumor growth in liver tumor xenografts of HepG2 cells and enhanced DNR therapy. Thus, acid CDase promotes hepatocarcinogenesis and its antagonism may be a promising strategy in the treatment of liver cancer. Topics: Animals; Carcinoma, Hepatocellular; Caspase 3; Cell Proliferation; Daunorubicin; Drug Therapy; Endocannabinoids; Ethanolamines; Galactosylgalactosylglucosylceramidase; Humans; Lysophospholipids; Mice; Microscopy, Electron, Transmission; Mitochondria; Oleic Acids; Protease Inhibitors; RNA, Messenger; RNA, Small Interfering; Sphingosine; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2007 |
Sphingosine kinase regulates hepatoma cell differentiation: roles of hepatocyte nuclear factor and retinoid receptor.
In hepatoma Huh-7 cells, inhibition of sphingosine kinase (SphK) activity by N,N-dimethylsphingosine (DMS) resulted in up-regulated production of liver-specific serum proteins including albumin and alpha-fetoprotein (AFP). The changes in these protein levels coincided well with those of two liver-enriched transcription factors, hepatocyte nuclear factor (HNF)-1 and -4, which regulate a number of liver-specific genes at the transcriptional level. Moreover, DMS induced the expression of retinoic acid receptor-alpha and retinoid X receptor-alpha. In DMS-treated cells, 9-cis retinoic acid (RA) further enhanced HNF-4alpha and albumin expression but it inhibited AFP accumulation. These results suggest that activation of SphK disengages cells from their liver-specific phenotype, and that 9-cis RA further induces differentiation of hepatoma cells when SphK activity is inhibited. Topics: Alitretinoin; alpha-Fetoproteins; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Carcinoma, Hepatocellular; Cell Differentiation; DNA-Binding Proteins; Enzyme Inhibitors; Hepatocyte Nuclear Factor 1; Hepatocyte Nuclear Factor 1-alpha; Hepatocyte Nuclear Factor 1-beta; Hepatocyte Nuclear Factor 4; Hepatocytes; Humans; Liver; Lysophospholipids; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Nuclear Proteins; Phosphoproteins; Phosphotransferases (Alcohol Group Acceptor); Receptors, Retinoic Acid; Retinoic Acid Receptor alpha; Retinoid X Receptors; Serum Albumin; Sphingosine; Transcription Factors; Tretinoin; Tumor Cells, Cultured | 2001 |
Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells.
Sphingosine and other long-chain bases (including sphinganine, dimethylsphingosine and stearylamine), but not octylamine (a short-chain analogue of sphinganine), induced apoptosis in Hep3B hepatoma cells. Because both D- and L-erythrosphingosine and stearylamine exert potent apoptotic effects on Hep3B cells, it is possible that these long-chain bases may activate apoptosis by inhibiting protein kinase C (PKC) activity. However, pretreatment with the PKC activator PMA could not rescue cells from apoptosis triggered by long-chain bases. Therefore the involvement of PKC in this apoptotic process requires further characterization. We also investigated whether these long-chain bases might be metabolized into ceramide in order to elicit their apoptotic action. We found that long-chain bases acted independently of ceramide in the induction of apoptosis, since addition of fumonisin B1, a fungal agent which effectively inhibits ceramide synthesis from sphingosine, did not protect against apoptosis. Additionally, we found that sphingosine-induced apoptosis was accompanied by activation of caspases. The functional role of caspases in this apoptotic process was examined by using specific caspase inhibitors. The general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone, which exhibits a broad specificity for caspase-family proteases, effectively blocked sphingosine-induced apoptosis. Furthermore, our results indicate that caspase-3-like proteases, but not caspase-1, are activated during apoptosis triggered by sphingosine. Enhancement of caspase-3-like activity and cleavage of poly(ADP-ribose) polymerase, an in vivo substrate for caspase-3, was clearly demonstrated in sphingosine-treated Hep3B cells. Considered together, these results suggest that caspase-3-like proteases participate in apoptotic cell death induced by sphingosine. Topics: Amino Acid Chloromethyl Ketones; Apoptosis; Carcinoma, Hepatocellular; Caspase 3; Caspase Inhibitors; Caspases; Catalysis; Enzyme Activation; Enzyme Induction; Humans; Lysophospholipids; Poly(ADP-ribose) Polymerases; Sphingosine; Tetradecanoylphorbol Acetate; Tumor Cells, Cultured | 1999 |
Induction of apoptosis by sphingosine-1-phosphate in human hepatoma cells is associated with enhanced expression of bax gene product.
Sphingolipid metabolites are important regulators of cell growth and differentiation. Recent studies have suggested that sphingosine-1-phosphate, a biologically active sphingolipid metabolite, acts as a crucial messenger in apoptosis. In the present work, we examined the expression levels of the members of the bcl-2-related gene family to determine their roles in sphingosine-1-phosphate-induced apoptosis is human hepatoma cells. Our results indicate that sphinogosine-1-phosphate-induced apoptosis is associated with enhanced expression of Bax protein. Moreover, the regulation of bax gene expression by sphingosine-1-phosphate is independent of the p53 tumor suppressor. Topics: Apoptosis; bcl-2-Associated X Protein; bcl-X Protein; Carcinoma, Hepatocellular; DNA Fragmentation; Dose-Response Relationship, Drug; Gene Expression; Humans; Liver; Liver Neoplasms; Lysophospholipids; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Sphingolipids; Sphingosine; Time Factors; Tumor Cells, Cultured | 1996 |