sphingosine-1-phosphate and Brain-Neoplasms

sphingosine-1-phosphate has been researched along with Brain-Neoplasms* in 21 studies

Reviews

3 review(s) available for sphingosine-1-phosphate and Brain-Neoplasms

ArticleYear
Sphingolipid Metabolism in Glioblastoma and Metastatic Brain Tumors: A Review of Sphingomyelinases and Sphingosine-1-Phosphate.
    Biomolecules, 2020, 09-23, Volume: 10, Issue:10

    Glioblastoma (GBM) is a primary malignant brain tumor with a dismal prognosis, partially due to our inability to completely remove and kill all GBM cells. Rapid tumor recurrence contributes to a median survival of only 15 months with the current standard of care which includes maximal surgical resection, radiation, and temozolomide (TMZ), a blood-brain barrier (BBB) penetrant chemotherapy. Radiation and TMZ cause sphingomyelinases (SMase) to hydrolyze sphingomyelins to generate ceramides, which induce apoptosis. However, cells can evade apoptosis by converting ceramides to sphingosine-1-phosphate (S1P). S1P has been implicated in a wide range of cancers including GBM. Upregulation of S1P has been linked to the proliferation and invasion of GBM and other cancers that display a propensity for brain metastasis. To mediate their biological effects, SMases and S1P modulate signaling via phospholipase C (PLC) and phospholipase D (PLD). In addition, both SMase and S1P may alter the integrity of the BBB leading to infiltration of tumor-promoting immune populations. SMase activity has been associated with tumor evasion of the immune system, while S1P creates a gradient for trafficking of innate and adaptive immune cells. This review will explore the role of sphingolipid metabolism and pharmacological interventions in GBM and metastatic brain tumors with a focus on SMase and S1P.

    Topics: Brain Neoplasms; Cell Proliferation; Glioblastoma; Humans; Lysophospholipids; Neoplasm Metastasis; Phospholipase D; Sphingolipids; Sphingomyelin Phosphodiesterase; Sphingosine; Type C Phospholipases

2020
Sphingosine 1-phosphate (S1P) signaling in glioblastoma multiforme-A systematic review.
    International journal of molecular sciences, 2017, Nov-17, Volume: 18, Issue:11

    The multifunctional sphingosine-1-phosphate (S1P) is a lipid signaling molecule and central regulator in the development of several cancer types. In recent years, intriguing information has become available regarding the role of S1P in the progression of Glioblastoma multiforme (GBM), the most aggressive and common brain tumor in adults. S1P modulates numerous cellular processes in GBM, such as oncogenesis, proliferation and survival, invasion, migration, metastasis and stem cell behavior. These processes are regulated via a family of five G-protein-coupled S1P receptors (S1PR1-5) and may involve mainly unknown intracellular targets. Distinct expression patterns and multiple intracellular signaling pathways of each S1PR subtype enable S1P to exert its pleiotropic cellular actions. Several studies have demonstrated alterations in S1P levels, the involvement of S1PRs and S1P metabolizing enzymes in GBM pathophysiology. While the tumorigenic actions of S1P involve the activation of several kinases and transcription factors, the specific G-protein (Gi, Gq, and G12/13)-coupled signaling pathways and downstream mediated effects in GBM remain to be elucidated in detail. This review summarizes the recent findings concerning the role of S1P and its receptors in GBM. We further highlight the current insights into the signaling pathways considered fundamental for regulating the cellular processes in GMB and ultimately patient prognosis.

    Topics: Adult; Brain Neoplasms; Cell Movement; Disease Progression; Glioblastoma; GTP-Binding Proteins; Humans; Lysophospholipids; Neoplasm Invasiveness; Neoplasm Metastasis; Prognosis; Receptors, Lysosphingolipid; Sphingosine

2017
Sphingolipid signaling pathways as potential therapeutic targets in gliomas.
    Mini reviews in medicinal chemistry, 2007, Volume: 7, Issue:10

    Glioblastoma multiforme (GBM) is a highly malignant brain tumor. The interconvertible bioactive sphingolipids sphingosine-1-phosphate (S1P) and ceramide have profound effects on GBM cells, with ceramide causing cell death and S1P leading to cell survival, proliferation and invasion. This review will examine the effects of ceramide and S1P on glioma cells and the therapeutic potential of these pathways.

    Topics: Animals; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Cell Survival; Ceramides; Glioblastoma; Humans; Lysophospholipids; Signal Transduction; Sphingolipids; Sphingosine

2007

Trials

1 trial(s) available for sphingosine-1-phosphate and Brain-Neoplasms

ArticleYear
A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis.
    The Journal of biological chemistry, 2013, Dec-27, Volume: 288, Issue:52

    Studies in cell culture and mouse models of cancer have indicated that the soluble sphingolipid metabolite sphingosine 1-phosphate (S1P) promotes cancer cell proliferation, survival, invasiveness, and tumor angiogenesis. In contrast, its metabolic precursor ceramide is prodifferentiative and proapoptotic. To determine whether sphingolipid balance plays a significant role in glioma malignancy, we undertook a comprehensive analysis of sphingolipid metabolites in human glioma and normal gray matter tissue specimens. We demonstrate, for the first time, a systematic shift in sphingolipid metabolism favoring S1P over ceramide, which increases with increasing cancer grade. S1P content was, on average, 9-fold higher in glioblastoma tissues compared with normal gray matter, whereas the most abundant form of ceramide in the brain, C18 ceramide, was on average 5-fold lower. Increased S1P content in the tumors was significantly correlated with increased sphingosine kinase 1 (SPHK1) and decreased sphingosine phosphate phosphatase 2 (SGPP2) expression. Inhibition of S1P production by cultured glioblastoma cells, using a highly potent and selective SPHK1 inhibitor, blocked angiogenesis in cocultured endothelial cells without affecting VEGF secretion. Our findings validate the hypothesis that an altered ceramide/S1P balance is an important feature of human cancers and support the development of SPHK1 inhibitors as antiangiogenic agents for cancer therapy.

    Topics: Angiogenesis Inhibitors; Animals; Brain Neoplasms; Ceramides; Enzyme Inhibitors; Follow-Up Studies; Glioblastoma; Humans; Lipid Metabolism; Lysophospholipids; Male; Membrane Proteins; Mice; Neoplasm Proteins; Neovascularization, Pathologic; Phosphoric Monoester Hydrolases; Phosphotransferases (Alcohol Group Acceptor); Sphingosine; Vascular Endothelial Growth Factor A

2013

Other Studies

17 other study(ies) available for sphingosine-1-phosphate and Brain-Neoplasms

ArticleYear
Modulation of blood-brain tumor barrier for delivery of magnetic hyperthermia to brain cancer.
    Journal of controlled release : official journal of the Controlled Release Society, 2023, Volume: 355

    Glioblastoma (GBM) is the most invasive brain tumor and remains lack of effective treatment. The existence of blood-brain tumor barrier (BBTB) constitutes the greatest barrier to non-invasive delivery of therapeutic agents to tumors in the brain. Here, we propose a novel approach to specifically modulate BBTB and deliver magnetic hyperthermia in a systemic delivery mode for the treatment of GBM. BBTB modulation is achieved by targeted delivering fingolimod to brain tumor region via dual redox responsive PCL-SeSe-PEG (poly (ε-caprolactone)-diselenium-poly (ethylene glycol)) polymeric nanocarrier. As an antagonist of sphingosine 1-phosphate receptor-1 (S1P

    Topics: Blood-Brain Barrier; Brain Neoplasms; Endothelial Cells; Fingolimod Hydrochloride; Glioblastoma; Humans; Hyperthermia, Induced; Magnetic Phenomena

2023
Sphingosine 1-Phosphate Liposomes for Targeted Nitric Oxide Delivery to Mediate Anticancer Effects against Brain Glioma Tumors.
    Advanced materials (Deerfield Beach, Fla.), 2021, Volume: 33, Issue:30

    Topics: Animals; Antineoplastic Agents; Azo Compounds; Blood-Brain Barrier; Brain; Brain Neoplasms; Caveolin 1; Drug Compounding; Drug Liberation; Glioblastoma; Glioma; Glutathione Transferase; Humans; Liposomes; Lysophospholipids; Mice; Neoplasms, Experimental; Nitric Oxide; Piperazines; Prodrugs; Sphingosine; Sphingosine-1-Phosphate Receptors; Ultrasonography

2021
Extracellular Sphingosine-1-Phosphate Downstream of EGFR Increases Human Glioblastoma Cell Survival.
    International journal of molecular sciences, 2021, Jun-25, Volume: 22, Issue:13

    Sphingosine-1-phosphate (S1P) is a crucial mediator involved in the progression of different cancers, including glioblastoma multiforme (GBM), the most frequent and deadly human brain tumor, characterized by extensive invasiveness and rapid cell growth. Most of GBMs overexpress the epidermal growth factor receptor (EGFR), and we investigated the possible link between S1P and EGFR signaling pathways, focusing on its role in GBM survival, using the U87MG human cell line overexpressing EGFR (EGFR+). We previously demonstrated that EGFR+ cells have higher levels of extracellular S1P and increased sphingosine kinase-1 (SK1) activity than empty vector expressing cells. Notably, we demonstrated that EGFR+ cells are resistant to temozolomide (TMZ), the standard chemotherapeutic drug in GBM treatment, and the inhibition of SK1 or S1P receptors made EGFR+ cells sensitive to TMZ; moreover, exogenous S1P reverted this effect, thus involving extracellular S1P as a survival signal in TMZ resistance in GBM cells. In addition, both PI3K/AKT and MAPK inhibitors markedly reduced cell survival, suggesting that the enhanced resistance to TMZ of EGFR+ cells is dependent on the increased S1P secretion, downstream of the EGFR-ERK-SK1-S1P pathway. Altogether, our study provides evidence of a functional link between S1P and EGFR signaling pathways enhancing the survival properties of GBM cells.

    Topics: Antineoplastic Agents; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cells, Cultured; ErbB Receptors; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Lysophospholipids; Models, Biological; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Sphingosine

2021
Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors.
    Nature medicine, 2018, Volume: 24, Issue:9

    T cell dysfunction contributes to tumor immune escape in patients with cancer and is particularly severe amidst glioblastoma (GBM). Among other defects, T cell lymphopenia is characteristic, yet often attributed to treatment. We reveal that even treatment-naïve subjects and mice with GBM can harbor AIDS-level CD4 counts, as well as contracted, T cell-deficient lymphoid organs. Missing naïve T cells are instead found sequestered in large numbers in the bone marrow. This phenomenon characterizes not only GBM but a variety of other cancers, although only when tumors are introduced into the intracranial compartment. T cell sequestration is accompanied by tumor-imposed loss of S1P1 from the T cell surface and is reversible upon precluding S1P1 internalization. In murine models of GBM, hindering S1P1 internalization and reversing sequestration licenses T cell-activating therapies that were previously ineffective. Sequestration of T cells in bone marrow is therefore a tumor-adaptive mode of T cell dysfunction, whose reversal may constitute a promising immunotherapeutic adjunct.

    Topics: Animals; Bone Marrow; Brain Neoplasms; Endocytosis; Glioblastoma; Humans; Lymphoid Tissue; Lymphopenia; Lysophospholipids; Mice, Inbred C57BL; Sphingosine; Spleen; T-Lymphocytes

2018
Acid ceramidase confers radioresistance to glioblastoma cells.
    Oncology reports, 2017, Volume: 38, Issue:4

    Glioblastoma multiforme (GBM) is the most common primary, intracranial malignancy of the central nervous system. The standard treatment protocol, which involves surgical resection, and concurrent radiation with adjuvant temozolomide (TMZ), still imparts a grim prognosis. Ultimately, all GBMs exhibit recurrence or progression, developing resistance to standard treatment. This study demonstrates that GBMs acquire resistance to radiation via upregulation of acid ceramidase (ASAH1) and sphingosine‑1-phosphate (Sph-1P). Moreover, inhibition of ASAH1 and Sph-1P, either with humanized monoclonal antibodies, small molecule drugs (i.e. carmofur), or a combination of both, led to suppression of GBM cell growth. These results suggest that ASAH1 and Sph-1P may be excellent targets for the treatment of new GBMs and recurrent GBMs, especially since the latter overexpresses ASAH1.

    Topics: Acid Ceramidase; Brain Neoplasms; Cell Line, Tumor; Glioblastoma; Humans; Immunohistochemistry; Lysophospholipids; Neoplasm Recurrence, Local; Radiation Tolerance; Sphingosine; Up-Regulation

2017
Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme.
    Oncotarget, 2016, Mar-15, Volume: 7, Issue:11

    A signaling molecule which is involved in proliferation and migration of malignant cells is the lipid mediator sphingosine-1-phosphate (S1P). There are hints for a potential role of S1P signaling in malignant brain tumors such as glioblastoma multiforme (GBM) which is characterized by a poor prognosis. Therefore, a comprehensive expression analysis of S1P receptors (S1P1-S1P5) and S1P metabolizing enzymes in human GBM (n = 117) compared to healthy brain (n = 10) was performed to evaluate their role for patient´s survival. Furthermore, influence of S1P receptor inhibition on proliferation and migration were studied in LN18 GBM cells. Compared to control brain, mRNA levels of S1P1, S1P2, S1P3 and S1P generating sphingosine kinase-1 were elevated in GBM. Kaplan-Meier analyses demonstrated an association between S1P1 and S1P2 with patient´s survival times. In vitro, an inhibitory effect of the SphK inhibitor SKI-II on viability of LN18 cells was shown. S1P itself had no effect on viability but stimulated LN18 migration which was blocked by inhibition of S1P1 and S1P2. The participation of S1P1 and S1P2 in LN18 migration was further supported by siRNA-mediated silencing of these receptors. Immunoblots and inhibition experiments suggest an involvement of the PI3-kinase/AKT1 pathway in the chemotactic effect of S1P in LN18 cells.In summary, our data argue for a role of S1P signaling in proliferation and migration of GBM cells. Individual components of the S1P pathway represent prognostic factors for patients with GBM. Perspectively, a selective modulation of S1P receptor subtypes could represent a therapeutic approach for GBM patients and requires further evaluation.

    Topics: Biomarkers, Tumor; Brain Neoplasms; Cell Movement; Glioblastoma; Humans; Kaplan-Meier Estimate; Lysophospholipids; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid; Signal Transduction; Sphingosine

2016
Autocrine/paracrine sphingosine-1-phosphate fuels proliferative and stemness qualities of glioblastoma stem cells.
    Glia, 2014, Volume: 62, Issue:12

    Accumulating reports suggest that human glioblastoma contains glioma stem-like cells (GSCs) which act as key determinants driving tumor growth, angiogenesis, and contributing to therapeutic resistance. The proliferative signals involved in GSC proliferation and progression remain unclear. Using GSC lines derived from human glioblastoma specimens with different proliferative index and stemness marker expression, we assessed the hypothesis that sphingosine-1-phosphate (S1P) affects the proliferative and stemness properties of GSCs. The results of metabolic studies demonstrated that GSCs rapidly consume newly synthesized ceramide, and export S1P in the extracellular environment, both processes being enhanced in the cells exhibiting high proliferative index and stemness markers. Extracellular S1P levels reached nM concentrations in response to increased extracellular sphingosine. In addition, the presence of EGF and bFGF potentiated the constitutive capacity of GSCs to rapidly secrete newly synthesized S1P, suggesting that cooperation between S1P and these growth factors is of central importance in the maintenance and proliferation of GSCs. We also report for the first time that S1P is able to act as a proliferative and pro-stemness autocrine factor for GSCs, promoting both their cell cycle progression and stemness phenotypic profile. These results suggest for the first time that the GSC population is critically modulated by microenvironmental S1P, this bioactive lipid acting as an autocrine signal to maintain a pro-stemness environment and favoring GSC proliferation, survival and stem properties.

    Topics: Animals; Brain Neoplasms; Cell Proliferation; Cells, Cultured; Ceramides; Epidermal Growth Factor; Extracellular Fluid; Fibroblast Growth Factor 2; Fingolimod Hydrochloride; Glioblastoma; Humans; Immunosuppressive Agents; Ki-67 Antigen; Lysophospholipids; Mice; Mice, SCID; Middle Aged; Neoplastic Stem Cells; Propylene Glycols; Sphingolipids; Sphingosine; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2014
Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro.
    Experimental cell research, 2013, Aug-01, Volume: 319, Issue:13

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun(S73) phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment.

    Topics: Brain Neoplasms; Cell Line, Tumor; Cell Movement; Drug Evaluation, Preclinical; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Lysophospholipids; MAP Kinase Signaling System; Neoplasm Invasiveness; Protein Kinase D2; Protein Kinase Inhibitors; Protein Kinases; Pyrimidines; RNA Interference; RNA, Small Interfering; Sphingosine

2013
Extracellular sphingosine-1-phosphate: a novel actor in human glioblastoma stem cell survival.
    PloS one, 2013, Volume: 8, Issue:6

    Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs), a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P) a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ), and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source of extracellular S1P, which might act as an autocrine/paracrine signal contributing to their malignant properties.

    Topics: Brain Neoplasms; Cell Line, Tumor; Cell Separation; Cell Survival; Dacarbazine; Drug Resistance, Neoplasm; Extracellular Space; Glioblastoma; Humans; Intracellular Space; Lysophospholipids; Models, Biological; Neoplastic Stem Cells; Phosphotransferases (Alcohol Group Acceptor); Sphingosine; Temozolomide

2013
Sphingolipid modulation of angiogenic factor expression in neuroblastoma.
    Cancer prevention research (Philadelphia, Pa.), 2011, Volume: 4, Issue:8

    Metabolism of sphingolipids into downstream lipid mediators followed by signaling modulates tumor microenvironment and the cancer cells to influence tumor progression. As such, sphingolipid signaling represents a novel way to modulate tumor biology. Neuroblastoma (NB), the most common extracranial solid tumor of childhood, is highly angiogenic and often displays poor prognosis. However, the role of sphingolipid mediators is not known in NB. We found that NB expresses high levels of sphingosine kinase-2, which is essential for the formation of sphingosine-1-phosphate (S1P). S1P induced VEGF expression in SK-N-AS NB cells. The effect occurred at the transcriptional level. Hypoxia in combination with S1P had a synergistic effect on VEGF expression. Strong correlation was detected between S1P receptor-2 (S1P(2)) and VEGF mRNAs in 11 different cell lines and 17 NB tissues. Blockade of S1P(2) with the selective antagonist JTE-013 significantly inhibited S1P-induced VEGF expression. Overexpression and knockdown of S1P(2) in SK-N-AS cells increased or inhibited S1P-induced VEGF secretion, respectively. Interestingly, JTE-013 significantly inhibited tumor growth, VEGF mRNA expression, and induced apoptosis in the NB tumor xenografts. Taken together, our data suggest that enhanced formation of sphingolipid mediator S1P in NB profoundly influences tumor microenvironment by inducing VEGF expression via S1P(2). Modulation of sphingolipid signaling by inhibiting S1P(2) may constitute a novel strategy to control NB.

    Topics: Angiogenesis Inducing Agents; Animals; Brain Neoplasms; Cell Line, Tumor; Enzyme-Linked Immunosorbent Assay; Gene Expression Regulation, Neoplastic; Humans; Hypoxia; In Situ Nick-End Labeling; Lysophospholipids; Male; Mice; Mice, Nude; Neuroblastoma; Phosphotransferases (Alcohol Group Acceptor); Platelet Endothelial Cell Adhesion Molecule-1; Sphingolipids; Sphingosine; Vascular Endothelial Growth Factor A

2011
Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling.
    Molecular carcinogenesis, 2009, Volume: 48, Issue:10

    Future breakthroughs in cancer therapy must accompany targeted agents that will neutralize cancer stem cells response to circulating growth factors. Since the brain tissue microenvironmental niche is a prerequisite for expression of the stem cell marker CD133 antigen in brain tumors, we investigated the invasion mechanisms specific to CD133(+) U87 glioblastoma cells in response to lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), two circulating bioactive lysophospholipids and potent inducers of cancer. A CD133(+) U87 glioma cell population was isolated from parental U87 glioblastoma cells using magnetic cell sorting technology. The CD133(+)-enriched cell population grew as neurospheres and showed enhanced maximal response to both LPA (approximately 5.0-fold) and S1P (approximately 2.5-fold) at 1 microM when compared to parental U87 cells. The increased response to LPA in CD133(+) cells, reflected by increased levels of phosphorylated ERK, was found independent of the cooperative functions of the membrane-type-1 matrix metalloproteinase (MT1-MMP), while this cooperativity was essential to the S1P response. Quantitative RT-PCR was performed and we found higher gene expression levels of the S1P receptors S1P1 and S1P2, and of the LPA receptor LPA1 in CD133(+) cells than in their parental U87 cells. These increased levels reflected those observed from in vivo experimental U87 tumor implants. Our data suggest that the CD133(+) cell subpopulation evokes most of the lysophospholipid response within brain tumors through a combined regulation of S1P/LPA cell surface receptors signaling and by MT1-MMP. The emergence of lead compounds targeting the stem cell niche and S1P/LPA signaling in CD133(+) cancer cells is warranted.

    Topics: AC133 Antigen; Animals; Antigens, CD; Blotting, Western; Brain Neoplasms; Cell Line, Tumor; Female; Flow Cytometry; Glioblastoma; Glycoproteins; Humans; Lysophospholipids; Matrix Metalloproteinase 14; Mice; Mice, Nude; Neoplasm Invasiveness; Neoplastic Stem Cells; Peptides; Receptors, Lysosphingolipid; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; RNA, Small Interfering; Signal Transduction; Sphingosine; Xenograft Model Antitumor Assays

2009
Sphingosine-1-phosphate and interleukin-1 independently regulate plasminogen activator inhibitor-1 and urokinase-type plasminogen activator receptor expression in glioblastoma cells: implications for invasiveness.
    Molecular cancer research : MCR, 2008, Volume: 6, Issue:9

    Glioblastoma multiforme is an invasive primary brain tumor, which evades the current standard treatments. The invasion of glioblastoma cells into healthy brain tissue partly depends on the proteolytic and nonproteolytic activities of the plasminogen activator system proteins, including the urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor 1 (PAI-1), and a receptor for uPA (uPAR). Here we show that sphingosine-1-phosphate (S1P) and the inflammatory mediator interleukin-1 (IL-1) increase the mRNA and protein expression of PAI-1 and uPAR and enhance the invasion of U373 glioblastoma cells. Although IL-1 enhanced the expression of sphingosine kinase 1 (SphK1), the enzyme that produces S1P, down-regulation of SphK1 had no effect on the IL-1-induced uPAR or PAI-1 mRNA expression, suggesting that these actions of IL-1 are independent of S1P production. Indeed, the S1P-induced mRNA expression of uPAR and PAI-1 was blocked by the S1P(2) receptor antagonist JTE013 and by the down-regulation of S1P(2) using siRNA. Accordingly, the inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 and Rho-kinase, two downstream signaling cascades activated by S1P(2), blocked the activation of PAI-1 and uPAR mRNA expression by S1P. More importantly, the attachment of glioblastoma cells was inhibited by the addition of exogenous PAI-1 or siRNA to uPAR, whereas the invasion of glioblastoma cells induced by S1P or IL-1 correlated with their ability to enhance the expression of PAI-1 and uPAR. Collectively, these results indicate that S1P and IL-1 activate distinct pathways leading to the mRNA and protein expression of PAI-1 and uPAR, which are important for glioblastoma invasiveness.

    Topics: Blotting, Northern; Blotting, Western; Brain Neoplasms; Cell Adhesion; Glioblastoma; Humans; Interleukin-1; Lysophospholipids; Mitogen-Activated Protein Kinases; Neoplasm Invasiveness; Phosphotransferases (Alcohol Group Acceptor); Plasminogen Activator Inhibitor 1; Receptors, Cell Surface; Receptors, Urokinase Plasminogen Activator; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Sphingosine; Tumor Cells, Cultured; Urokinase-Type Plasminogen Activator

2008
Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness.
    Experimental cell research, 2007, May-01, Volume: 313, Issue:8

    Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P(1-5). S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P(1), S1P(2) and S1P(3) all contribute positively to S1P-stimulated glioma cell proliferation, with S1P(1) being the major contributor. Stimulation of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P(5) blocks glioma cell proliferation, and inhibits ERK activation. S1P(1) and S1P(3) enhance glioma cell migration and invasion. S1P(2) inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P(2) also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P(2)-stimulated glioma invasion. Thus, while S1P(2) decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix.

    Topics: Actin Cytoskeleton; Brain Neoplasms; Cell Adhesion; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Cysteine-Rich Protein 61; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Glioblastoma; Humans; Immediate-Early Proteins; Intercellular Signaling Peptides and Proteins; Lysophospholipids; Neoplasm Invasiveness; Receptors, Lysosphingolipid; rho GTP-Binding Proteins; Signal Transduction; Sphingosine; Stress Fibers

2007
Sphingosine-1-phosphate is released by cerebellar astrocytes in response to bFGF and induces astrocyte proliferation through Gi-protein-coupled receptors.
    Glia, 2006, Apr-15, Volume: 53, Issue:6

    The mitogenic role of sphingosine-1-phosphate (S1P) and its involvement in basic fibroblast growth factor (bFGF)-induced proliferation were examined in primary cultures of cerebellar astrocytes. Exposure to bFGF resulted in a rapid increase of extracellular S1P formation, bFGF inducing astrocytes to release S1P, but not sphingosine kinase, in the extracellular milieu. The SK inhibitor N,N-dimethylsphingosine inhibited S1P release as well as bFGF-induced growth stimulation. S1P application in quiescent astrocytes caused a dose-dependent increase in DNA synthesis. This gliotrophic effect was induced by a brief exposure to low nanomolar S1P, mimicked by the S1P receptor agonist dihydro-S1P, and inhibited by pertussis toxin (PTX), an inactivator of G(i)/G(o)-proteins. S1P also induced activation of extracellular signal-regulated kinase that was inhibited again by PTX. Moreover, the S1P lyase inhibitor 4-deoxypyridoxine induced the cellular accumulation of S1P but did not affect DNA synthesis. These results support the view that S1P exerted a mitogenic effect on cerebellar astrocytes extracellularly, most likely through cell surface S1P receptors. In agreement, mRNAs for S1P1, S1P2, and S1P3 receptors are expressed in cerebellar astrocytes (Anelli et al., 2005. J Neurochem 92:1204-1215). Ceramide, a negative regulator of astrocyte proliferation and down-regulated by bFGF (Riboni et al., 2002. Cerebellum 1:129-135), efficiently inhibited S1P-induced proliferation. The S1P action appears to be part of an autocrine/paracrine cascade stimulated by bFGF and, together with ceramide down-regulation, essential for astrocytes to respond to bFGF. The results suggest that S1P and bFGF/S1P may play an important role in physiopathological glial proliferation, such as brain development, reactive gliosis and brain tumor formation.

    Topics: Animals; Animals, Newborn; Astrocytes; Astrocytoma; Brain Neoplasms; Cell Proliferation; Cell Transformation, Neoplastic; Cells, Cultured; Ceramides; Cerebellum; DNA Replication; Enzyme Inhibitors; Extracellular Fluid; Extracellular Signal-Regulated MAP Kinases; Fibroblast Growth Factor 2; Gliosis; GTP-Binding Protein alpha Subunits, Gi-Go; Lysophospholipids; Mitosis; Phosphotransferases (Alcohol Group Acceptor); Rats; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine

2006
Effect of dimethylsphingosine on muscarinic M(3) receptor signalling in SH-SY5Y cells.
    European journal of pharmacology, 2000, Aug-18, Volume: 402, Issue:1-2

    The sphingosine kinase inhibitor, dimethylsphingosine, is an important tool for investigating intracellular effects of the putative second messenger compound, sphingosine 1-phosphate. However, the specificity of action of dimethylsphingosine has not been fully investigated. In human SH-SY5Y neuroblastoma cells, dimethylsphingosine (30 microM), produced a 25-fold increase in the EC(50) for methacholine-induced Ca(2+) mobilisation, and reduced the maximum response by 57+/-5%, suggesting the involvement of sphingosine 1-phosphate production in the Ca(2+) signal. However, dimethylsphingosine also inhibited [3H]N-methylscopolamine binding to whole SH-SY5Y cells and reduced methacholine-induced phosphoinositide turnover. Thus, this compound must be used with caution when investigating the role of sphingosine kinase in G-protein coupled receptor-mediated Ca(2+) mobilisation responses.

    Topics: Brain Neoplasms; Calcium; Cell Line; Enzyme Inhibitors; GTP-Binding Proteins; Humans; Image Processing, Computer-Assisted; Inositol 1,4,5-Trisphosphate; Lysophospholipids; Methacholine Chloride; Muscarinic Agonists; N-Methylscopolamine; Neuroblastoma; Receptor, Muscarinic M3; Receptors, Muscarinic; Signal Transduction; Sphingosine

2000
Exogenous sphingosine 1-phosphate and sphingosylphosphorylcholine do not stimulate phospholipase D in C6 glioma cells.
    Acta biochimica Polonica, 1999, Volume: 46, Issue:1

    In the present study we investigate the effect of exogenous sphingosine, sphingosine 1-phosphate and sphingosylphosphorylcholine on phospholipase D (PLD) activity in glioma C6 cells. The cells were prelabeled with [1-14C]palmitic acid and PLD-mediated synthesis of [14C]phosphatidylethanol was measured. Sphingosine 1-phosphate and sphingosylphosphorylcholine did not stimulate [14C]phosphatidylethanol formation either at low (0.1-10 microM) or high (25-100 microM) concentrations. On the other hand, sphingosine at concentrations of 100-250 microM strongly stimulated PLD activity as compared to the effect of phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), known as a PLD activator. The effect of TPA on PLD is linked to the activation of protein kinase C. The present study also shows that sphingosine additively enhances TPA-mediated PLD activity. This is in contrast to the postulated role of sphingosine as a protein kinase C inhibitor. These results demonstrate that in glioma C6 cells sphingosine not only affects PLD independently of its effect on protein kinase C, but also is unable to block TPA-mediated PLD activity.

    Topics: Brain Neoplasms; Enzyme Activation; Glioma; Lysophospholipids; Phospholipase D; Phosphorylcholine; Sphingosine; Tetradecanoylphorbol Acetate; Tumor Cells, Cultured

1999
Sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate modulate phosphatidylserine homeostasis in glioma C6 cells.
    Acta biochimica Polonica, 1999, Volume: 46, Issue:1

    The effect of sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate on L-[U-14C]serine incorporation into phosphatidylserine and phosphatidylserine-derived phosphatidylethanolamine was investigated in intact glioma C6 cells. Sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate are potent signalling molecules which, due to their physicochemical features, may function as amphiphilic compounds. It has been found that sphingosine and sphingosylphosphorylcholine (amphiphilic cations) significantly increase [14C]phosphatidylserine synthesis and decrease the amount of 14C-labeled phosphatidylethanolamine. Sphingosine 1-phosphate (an amphiphilic anion) was without effect on phosphatidylserine synthesis but, similarly as sphingosine and sphingosylphosphorylcholine, reduced the conversion of phosphatidylserine to phosphatidylethanolamine. These results strongly suggest that sphingosine, sphingosylphosphorylcholine and sphingosine 1-phosphate can modulate cellular phospholipid homeostasis by stimulation of phosphatidylserine synthesis and an interference with phosphatidylserine decarboxylase.

    Topics: Brain Neoplasms; Glioma; Homeostasis; Lysophospholipids; Phosphorylcholine; Sphingosine; Tumor Cells, Cultured

1999