sphingosine-1-phosphate and Autistic-Disorder

sphingosine-1-phosphate has been researched along with Autistic-Disorder* in 2 studies

Other Studies

2 other study(ies) available for sphingosine-1-phosphate and Autistic-Disorder

ArticleYear
Modulation of sphingosine 1-phosphate (S1P) attenuates spatial learning and memory impairments in the valproic acid rat model of autism.
    Psychopharmacology, 2018, Volume: 235, Issue:3

    Autism spectrum disorders (ASD) are a set of pervasive neurodevelopmental disorders that manifest in early childhood, and it is growing up to be a major cause of disability in children. However, the etiology and treatment of ASD are not well understood. In our previous study, we found that serum levels of sphingosine 1-phosphate (S1P) were increased significantly in children with autism, indicating that S1P levels may be involved in ASD.. The objective of this study was to identify a link between increased levels of S1P and neurobehavioral changes in autism.. We utilized a valproic acid (VPA) -induced rat model of autism to evaluate the levels of S1P and the expression of sphingosine kinase (SphK), a key enzyme for S1P production, in serum and hippocampal tissue. Furthermore, we assessed cognitive functional changes and histopathological and neurochemical alterations in VPA-exposed rats after SphK blockade to explore the possible link between increased levels of S1P and neurobehavioral changes in autism.. We found that SphK2 and S1P are upregulated in hippocampal tissue from VPA-exposed rats, while pharmacological inhibition of SphK reduced S1P levels, attenuated spatial learning and memory impairments, increased the expression of phosphorylated CaMKII and CREB and autophagy-related proteins, inhibited cytochrome c release, decreased the expression of apoptosis related proteins, and protected against neuronal loss in the hippocampus.. We have demonstrated that an increased level of SphK2/S1P is involved in the spatial learning and memory impairments of autism, and this signaling pathway represents a novel therapeutic target and direction for future studies.

    Topics: Analysis of Variance; Animals; Apoptosis; Autistic Disorder; Autophagy; Biomarkers; Disease Models, Animal; Hippocampus; Humans; Lysophospholipids; Male; Memory Disorders; Neurons; Phosphotransferases (Alcohol Group Acceptor); Rats; Rats, Wistar; Signal Transduction; Spatial Learning; Sphingosine; Thiazoles; Valproic Acid

2018
Potential serum biomarkers from a metabolomics study of autism.
    Journal of psychiatry & neuroscience : JPN, 2016, Volume: 41, Issue:1

    Early detection and diagnosis are very important for autism. Current diagnosis of autism relies mainly on some observational questionnaires and interview tools that may involve a great variability. We performed a metabolomics analysis of serum to identify potential biomarkers for the early diagnosis and clinical evaluation of autism.. We analyzed a discovery cohort of patients with autism and participants without autism in the Chinese Han population using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF MS/MS) to detect metabolic changes in serum associated with autism. The potential metabolite candidates for biomarkers were individually validated in an additional independent cohort of cases and controls. We built a multiple logistic regression model to evaluate the validated biomarkers.. We included 73 patients and 63 controls in the discovery cohort and 100 cases and 100 controls in the validation cohort. Metabolomic analysis of serum in the discovery stage identified 17 metabolites, 11 of which were validated in an independent cohort. A multiple logistic regression model built on the 11 validated metabolites fit well in both cohorts. The model consistently showed that autism was associated with 2 particular metabolites: sphingosine 1-phosphate and docosahexaenoic acid.. While autism is diagnosed predominantly in boys, we were unable to perform the analysis by sex owing to difficulty recruiting enough female patients. Other limitations include the need to perform test-retest assessment within the same individual and the relatively small sample size.. Two metabolites have potential as biomarkers for the clinical diagnosis and evaluation of autism.

    Topics: Asian People; Autistic Disorder; Biomarkers; Blood Chemical Analysis; Child; Child, Preschool; China; Chromatography, High Pressure Liquid; Cohort Studies; Docosahexaenoic Acids; Female; Humans; Least-Squares Analysis; Logistic Models; Lysophospholipids; Male; Metabolomics; ROC Curve; Sphingosine; Tandem Mass Spectrometry

2016