sphingosine-1-phosphate has been researched along with Arthritis--Rheumatoid* in 19 studies
5 review(s) available for sphingosine-1-phosphate and Arthritis--Rheumatoid
Article | Year |
---|---|
S1P-S1PR1 Signaling: the "Sphinx" in Osteoimmunology.
The fundamental interaction between the immune and skeletal systems, termed as osteoimmunology, has been demonstrated to play indispensable roles in the maintenance of balance between bone resorption and formation. The pleiotropic sphingolipid metabolite, sphingosine 1-phosphate (S1P), together with its cognate receptor, sphingosine-1-phosphate receptor-1 (S1PR1), are known as key players in osteoimmunology due to the regulation on both immune system and bone remodeling. The role of S1P-S1PR1 signaling in bone remodeling can be directly targeting both osteoclastogenesis and osteogenesis. Meanwhile, inflammatory cell function and polarization in both adaptive immune (T cell subsets) and innate immune cells (macrophages) are also regulated by this signaling axis, suggesting that S1P-S1PR1 signaling could aslo indirectly regulate bone remodeling Topics: Animals; Arthritis, Rheumatoid; Bone Remodeling; Bone Resorption; Humans; Lysophospholipids; Macrophages; Periodontitis; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Spondylarthritis; T-Lymphocytes | 2019 |
Implication of sphingosine-1-phosphate signaling in diseases: molecular mechanism and therapeutic strategies.
Sphingosine-1-phosphate signaling is emerging as a critical regulator of cellular processes that is initiated by the intracellular production of bioactive lipid molecule, sphingosine-1-phosphate. Binding of sphingosine-1-phosphate to its extracellular receptors activates diverse downstream signaling that play a critical role in governing physiological processes. Increasing evidence suggests that this signaling pathway often gets impaired during pathophysiological and diseased conditions and hence manipulation of this signaling pathway may be beneficial in providing treatment. In this review, we summarized the recent findings of S1P signaling pathway and the versatile role of the participating candidates in context with several disease conditions. Finally, we discussed its possible role as a novel drug target in different diseases. Topics: Arthritis, Rheumatoid; Ceramidases; Diabetes Mellitus; Humans; Lysophospholipids; Molecular Targeted Therapy; Multiple Sclerosis; Neoplasms; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Sphingosine | 2017 |
Sphingosine-1-phosphate: a potential therapeutic target for rheumatoid arthritis.
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease, which has as its primary target, the synovial tissues and articular cartilage. The current pharmacological treatment of RA includes non-steroidal anti-inflammatory drugs, corticosteroids, and disease-modifying anti-rheumatic drugs. Newer biological agents that work by inactivation of proinflammatory cytokines are available for treatment of RA. Sphingosine-1-phosphate (S1P) is a bioactive lipid that is generated from phosphorylation of sphingosine by activation of sphingosine kinase, and has been implicated as an important mediator in pathophysiological processes, including cell growth, differentiation, migration and survival, and angiogenesis. Several studies have explored the role of S1P in the pathogenesis of RA. The aim of this article was to review the biology and distribution of S1P, together with its role in RA, and to discuss its potential as a therapeutic target for RA. Topics: Animals; Arthritis, Rheumatoid; Humans; Lysophospholipids; Molecular Targeted Therapy; Phosphotransferases (Alcohol Group Acceptor); Sphingosine | 2011 |
[Encounter of cancer cells with bone. In vivo imaging of osteoclasts and their precursors in intact bone tissues].
Osteoclasts play critical roles not only in normal bone homeostasis ('remodeling') , but also in the pathogenesis of bone destructive disorders such as osteoporosis, rheumatoid arthritis, and bone metastasis. However, it has not been known how osteoclast precursor monocytes migrate into the bone surface and what controls their migratory behaviors. To reveal these systems, we have recently established a new system for visualizing intact bone tissues and bone marrow cavities in live animals by using an advanced imaging technique with intravital two-photon microscopy. By means of the system we have revealed that sphingosine-1-phosphate (S1P) , a lipid mediator, dynamically regulates migration and localization of osteoclasts and their precursors in vivo . Here we show the latest data and the detailed methodology of intravital imaging of bone tissues, and also discuss its further application. Topics: Animals; Arthritis, Rheumatoid; Bone and Bones; Bone Remodeling; Cell Movement; Chemokines; Humans; Lysophospholipids; Mice; Microscopy, Fluorescence, Multiphoton; Osteoclasts; Osteoporosis; Receptors, Lysosphingolipid; Sphingosine; Sphingosine-1-Phosphate Receptors | 2011 |
Regulation of macrophage function by sphingosine-1-phosphate.
The bioactive lipid sphingosine-1-phosphate (S1P) fulfils manifold tasks in the immune system acting in auto- and/or paracrine fashion. This includes regulation of apoptosis, migration and proliferation. Upon its generation by sphingosine kinases from plasma membrane sphingolipids, S1P can either act as a second messenger within cells or can be released from cells to occupy a family of specific G-protein-coupled receptors (S1P1-5). This diversity is reflected by the impact of S1P on macrophage biology and function. Over the last years it became apparent that the sphingosine kinase/S1P/S1P-receptor signalling axis in macrophages might play a central role in the pathogenesis of inflammatory diseases such as atherosclerosis, asthma, rheumatoid arthritis and cancer. Here, we summarize the current knowledge of the function of S1P in macrophage biology and discuss potential implications for pathology. Topics: Animals; Arthritis, Rheumatoid; Asthma; Atherosclerosis; Humans; Inflammation; Lysophospholipids; Macrophage Activation; Macrophages; Neoplasms; Phosphotransferases (Alcohol Group Acceptor); Receptors, G-Protein-Coupled; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine | 2009 |
14 other study(ies) available for sphingosine-1-phosphate and Arthritis--Rheumatoid
Article | Year |
---|---|
Inhibition of sphingosine 1-phosphate (S1P) receptor 1/2/3 ameliorates biological dysfunction in rheumatoid arthritis fibroblast-like synoviocyte MH7A cells through Gαi/Gαs rebalancing.
Sphingosine 1-phosphate (S1P) exerts its various physiological and pathological effects by interacting with G protein-coupled receptors. In addition, S1P can induce biological dysfunction in fibroblast-like synoviocytes (FLSs) in the development of rheumatoid arthritis (RA). However, the mechanism underlying this S1P-induced dysfunction remains unclear. An imbalance between Gαi and Gαs can affect the level of cAMP, an important regulator of numerous cell functions. Therefore, we studied the effects of S1P receptor (S1PR) 1-, 2-, and 3-associated Gαi/Gαs imbalance on the biological function of rheumatoid arthritis fibroblast-like synoviocyte (MH7A cells). The results showed that blocking S1PR1/3 and Gαi, and activating Gαs, inhibited the proliferation, migration, invasion, and proinflammatory cytokine release of MH7A cells in a S1P-induced inflammation model, whereas suppressing S1PR2 only affected the invasion and the release of proinflammatory cytokines of these cells. Analysis of the expression of S1PR1/2/3 and Gαi/Gαs further showed that S1PR1/2/3 could regulate the Gαi/Gαs balance. Furthermore, our data suggested that the level of cAMP was also affected. Combined, our results showed that impaired S1PR1/2/3 signalling can affect MH7A cells biological function via Gαi/Gαs-cAMP signalling, which can provide a new idea for the treatment of RA. Topics: Arthritis, Rheumatoid; Lysophospholipids; Sphingosine; Sphingosine-1-Phosphate Receptors; Synoviocytes | 2021 |
S1P Increases VEGF Production in Osteoblasts and Facilitates Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-16-5p Expression via the c-Src/FAK Signaling Pathway in Rheumatoid Arthritis.
Angiogenesis is a critical process in the formation of new capillaries and a key participant in rheumatoid arthritis (RA) pathogenesis. Vascular endothelial growth factor (VEGF) stimulation of endothelial progenitor cells (EPCs) facilitates angiogenesis and the progression of RA. Phosphorylation of sphingosine kinase 1 (SphK1) produces sphingosine-1-phosphate (S1P), which increases inflammatory cytokine production, although the role of S1P in RA angiogenesis is unclear. In this study, we evaluated the impact of S1P treatment on VEGF-dependent angiogenesis in osteoblast-like cells (MG-63 cells) and the significance of SphK1 short hairpin RNA (shRNA) on S1P production in an in vivo model. We found significantly higher levels of S1P and VEGF expression in synovial fluid from RA patients compared with those with osteoarthritis by ELISA analysis. Treating MG-63 cells with S1P increased VEGF production, while focal adhesion kinase (FAK) and Src siRNAs and inhibitors decreased VEGF production in S1P-treated MG-63 cells. Conditioned medium from S1P-treated osteoblasts significantly increased EPC tube formation and migration by inhibiting miR-16-5p synthesis via proto-oncogene tyrosine-protein kinase src (c-Src) and FAK signaling in chick chorioallantoic membrane (CAM) and Matrigel plug assays. Infection with SphK1 shRNA reduced angiogenesis, articular swelling and cartilage erosion in the ankle joints of mice with collagen-induced arthritis (CIA). S1P appears to have therapeutic potential in RA treatment. Topics: Animals; Arthritis, Rheumatoid; Cell Line; Endothelial Progenitor Cells; Enzyme-Linked Immunosorbent Assay; Focal Adhesion Protein-Tyrosine Kinases; Humans; Immunoblotting; Lysophospholipids; Mice; MicroRNAs; Osteoblasts; Proto-Oncogene Mas; Signal Transduction; Sphingosine; Vascular Endothelial Growth Factor A | 2021 |
S1P facilitates IL-1β production in osteoblasts via the JAK and STAT3 signaling pathways.
Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory disease, in which the immune system attacks synovial joint tissues. Interleukin (IL)-1β is a critical proinflammatory cytokine in RA progression. Sphingosine-1-phosphate (S1P), a platelet-derived lysophospholipid mediator, reportedly regulates osteoimmunology. Here, we investigated how S1P mediates IL-1β expression in osteoblasts. Our analysis of records from the Gene Expression Omnibus (GEO) database demonstrate higher levels of IL-1β in patients with RA compared with those with osteoarthritis. Stimulation of osteoblasts with S1P concentration dependently increased mRNA and protein expression of IL-1β. Elevations in IL-1β mRNA expression induced by S1P were reduced by the small interfering RNA (siRNA) against the S1P Topics: Arthritis, Rheumatoid; Cells, Cultured; Humans; Interleukin-1beta; Janus Kinases; Lysophospholipids; Male; Osteoarthritis; Osteoblasts; RNA, Messenger; RNA, Small Interfering; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; STAT3 Transcription Factor | 2020 |
Homeostatic regulation of T cell trafficking by a B cell-derived peptide is impaired in autoimmune and chronic inflammatory disease.
During an inflammatory response, lymphocyte recruitment into tissue must be tightly controlled because dysregulated trafficking contributes to the pathogenesis of chronic disease. Here we show that during inflammation and in response to adiponectin, B cells tonically inhibit T cell trafficking by secreting a peptide (PEPITEM) proteolytically derived from 14.3.3 zeta delta (14.3.3.ζδ) protein. PEPITEM binds cadherin-15 on endothelial cells, promoting synthesis and release of sphingosine-1 phosphate, which inhibits trafficking of T cells without affecting recruitment of other leukocytes. Expression of adiponectin receptors on B cells and adiponectin-induced PEPITEM secretion wanes with age, implying immune senescence of the pathway. Additionally, these changes are evident in individuals with type 1 diabetes or rheumatoid arthritis, and circulating PEPITEM in patient serum is reduced compared to that of healthy age-matched donors. In both diseases, tonic inhibition of T cell trafficking across inflamed endothelium is lost. Control of patient T cell trafficking is re-established by treatment with exogenous PEPITEM. Moreover, in animal models of peritonitis, hepatic ischemia-reperfusion injury, Salmonella infection, uveitis and Sjögren's syndrome, PEPITEM reduced T cell recruitment into inflamed tissues. Topics: 14-3-3 Proteins; Adiponectin; Adult; Age Factors; Aged; Aging; Animals; Arthritis, Rheumatoid; Autoimmunity; B-Lymphocytes; Cadherins; Cell Adhesion; Cell Movement; Diabetes Mellitus, Type 1; Female; Gene Expression Regulation; Homeostasis; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Lysophospholipids; Male; Mice; Middle Aged; Peptides; Receptors, Adiponectin; Sphingosine; T-Lymphocytes; Young Adult | 2015 |
Chemical Hypoxia Brings to Light Altered Autocrine Sphingosine-1-Phosphate Signalling in Rheumatoid Arthritis Synovial Fibroblasts.
Emerging evidence suggests a role for sphingosine-1-phosphate (S1P) in various aspects of rheumatoid arthritis (RA) pathogenesis. In this study we compared the effect of chemical hypoxia induced by cobalt chloride (CoCl2) on the expression of S1P metabolic enzymes and cytokine/chemokine secretion in normal fibroblast-like synoviocytes (FLS) and RAFLS. RAFLS incubated with CoCl2, but not S1P, produced less IL-8 and MCP-1 than normal FLS. Furthermore, incubation with the S1P2 and S1P3 receptor antagonists, JTE-013 and CAY10444, reduced CoCl2-mediated chemokine production in normal FLS but not in RAFLS. RAFLS showed lower levels of intracellular S1P and enhanced mRNA expression of S1P phosphatase 1 (SGPP1) and S1P lyase (SPL), the enzymes that are involved in intracellular S1P degradation, when compared to normal FLS. Incubation with CoCl2 decreased SGPP1 mRNA and protein and SPL mRNA as well. Inhibition of SPL enhanced CoCl2-mediated cytokine/chemokine release and restored autocrine activation of S1P2 and S1P3 receptors in RAFLS. The results suggest that the sphingolipid pathway regulating the intracellular levels of S1P is dysregulated in RAFLS and has a significant impact on cell autocrine activation by S1P. Altered sphingolipid metabolism in FLS from patients with advanced RA raises the issue of synovial cell burnout due to chronic inflammation. Topics: Arthritis, Rheumatoid; Cell Hypoxia; Chemokines; Cobalt; Fibroblasts; Humans; Lysophospholipids; Membrane Proteins; Phosphoric Monoester Hydrolases; Signal Transduction; Sphingosine; Stress, Physiological; Synovial Membrane; Thiazolidines | 2015 |
Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-κB ligand (RANKL) expression in rheumatoid arthritis.
Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-κB ligand (RANKL) in RA synoviocytes and CD4(+) T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4(+) T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4(+) T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-α in MH7A cells and CD4(+) T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4(+) T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA. Topics: Arthritis, Rheumatoid; CD4-Positive T-Lymphocytes; Cells, Cultured; GTP-Binding Protein alpha Subunits, Gi-Go; Humans; Lysophospholipids; RANK Ligand; Receptors, Lysosphingolipid; RNA, Messenger; Signal Transduction; Sphingosine; Synovial Fluid | 2012 |
S1P-targeted therapy for elderly rheumatoid arthritis patients with osteoporosis.
Therapeutics targeting sphingosine-1-phosphate (S1P), a kind of lipid mediator regulating immune cell trafficking, has been emerging rapidly as a novel line of regimen for autoimmune diseases, including rheumatoid arthritis (RA). Here, we propose that S1P-targeted therapy is beneficial not only for limiting inflammation but for preventing bone-resorptive disorders, such as osteoporosis, by controlling the migratory behavior of osteoclast precursors and therefore would be good for treating elderly female RA patients who suffer from postmenopausal osteoporosis and arthritis simultaneously. Topics: Age Factors; Aged; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arthritis, Rheumatoid; Female; Humans; Lysophospholipids; Mice; Osteoclasts; Osteoporosis, Postmenopausal; Receptors, Lysosphingolipid; Sphingosine; Treatment Outcome | 2011 |
Chronic increases in sphingosine kinase-1 activity induce a pro-inflammatory, pro-angiogenic phenotype in endothelial cells.
Sphingosine kinase-1 (SK1) promotes the formation of sphingosine-1-phosphate (S1P), which has potent pro-inflammatory and pro-angiogenic effects. We investigated the effects of raised SK1 levels on endothelial cell function and the possibility that this signaling pathway is activated in rheumatoid arthritis. Human umbilical vein endothelial cells with 3- to 5-fold SK1 (EC(SK)) overexpression were generated by adenoviral and retroviralmediated gene delivery. The activation state of these cells and their ability to undergo angiogenesis was determined. S1P was measured in synovial fluid from patients with RA and OA. EC(SK) showed an enhanced migratory capacity and a stimulated rate of capillary tube formation. The cells showed constitutive activation as evidenced by the induction of basal VCAM-1 expression, and further showed a more augmented VCAM-1 and E selectin response to TNF compared with empty vector control cells (EC(EV)). These changes had functional consequences in terms of enhanced neutrophil binding in the basal and TNFstimulated states in EC(SK). By contrast, over-expression of a dominant-negative SK inhibited the TNF-induced VCAM-1 and E selectin and inhibited PMN adhesion, confirming that the observed effects were specifically mediated by SK. The synovial fluid levels of S1P were significantly higher in patients with RA than in those with OA. Small chronic increases in SK1 activity in the endothelial cells enhance the ability of the cells to support inflammation and undergo angiogenesis, and sensitize the cells to inflammatory cytokines. The SK1 signaling pathway is activated in RA, suggesting that manipulation of SK1 activity in diseases of aberrant inflammation and angiogenesis may be beneficial. Topics: Arthritis, Rheumatoid; Cell Adhesion; Cell Movement; Chronic Disease; E-Selectin; Endothelial Cells; Endothelium, Vascular; Humans; Lysophospholipids; Neovascularization, Physiologic; Osteoarthritis; Phenotype; Phosphotransferases (Alcohol Group Acceptor); Signal Transduction; Sphingosine; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1 | 2009 |
Specific and overlapping sphingosine-1-phosphate receptor functions in human synoviocytes: impact of TNF-alpha.
Sphingosine-1-phosphate (S1P), via interaction with its G protein-coupled receptors, regulates various physiological and pathological responses. The present study investigated the role of S1P/S1P receptor signaling in several functional responses of human fibroblast-like synoviocytes (FLSs) that may contribute to the pathogenesis of rheumatoid arthritis (RA). We report that FLSs express the S1P(1), S1P(2), and S1P(3) receptors. Moreover, exogenously applied S1P induces FLS 1) migration, 2) secretion of inflammatory cytokines/chemokines, and 3) protection from apoptosis. Using specific S1P receptor agonists/antagonists, we determined that S1P stimulates FLS migration through S1P(1) and S1P(3), induces cytokine/chemokine secretion through S1P(2) and S1P(3), and protects from cell apoptosis via S1P(1). The S1P-mediated cell motility and cytokine/chemokine secretion seem to be regulated by the p38 mitogen-activated protein kinase (MAPK), p42/44 MAPK, and Rho kinase signal transduction pathways. Interestingly, treatment of FLSs with tumor necrosis factor-alpha increases S1P(3) expression and correlates with the enhancement of S1P-induced cytokine/chemokine production. Our data suggest that S1P(1), S1P(2), and S1P(3) play essential roles in the pathogenesis of RA by modulating FLS migration, cytokine/chemokine production, and cell survival. Moreover, the cytokine-rich environment of the inflamed synovium may synergize with S1P signaling to exacerbate the clinical manifestations of this autoimmune disease. Topics: Arthritis, Rheumatoid; Cell Movement; Cell Survival; Cells, Cultured; Humans; Lysophospholipids; Receptors, Lysosphingolipid; Sphingosine; Sphingosine-1-Phosphate Receptors; Synovial Fluid; Synovial Membrane; Tumor Necrosis Factor-alpha | 2008 |
Potential role of sphingosine 1-phosphate in the pathogenesis of rheumatoid arthritis.
Topics: Arthritis, Rheumatoid; Female; Humans; Lysophospholipids; Male; Sphingosine; Tumor Necrosis Factor-alpha | 2008 |
Anti-inflammatory effects of sphingosine kinase modulation in inflammatory arthritis.
Sphingosine kinase (SphK) is a key enzyme in the sphingolipid metabolic pathway responsible for phosphorylating sphingosine into sphingosine-1-phosphate (S1P). SphK/S1P play a critical role in angiogenesis, inflammation, and various pathologic conditions. Recently, S1P(1) receptor was found to be expressed in rheumatoid arthritis (RA) synovium, and S1P signaling via S1P(1) enhances synoviocyte proliferation, COX-2 expression, and prostaglandin E(2) production. Here, we examined the role of SphK/S1P in RA using a potent SphK inhibitor, N,N-dimethylsphingosine (DMS), and a molecular approach against one of its isoenzymes, SphK1. We observed that levels of S1P in the synovial fluid of RA patients were significantly higher than those of osteoarthritis patients. Additionally, DMS significantly reduced the levels of TNF-alpha, IL-6, IL-1beta, MCP-1, and MMP-9 in cell-contact assays using both Jurkat-U937 cells and RA PBMCs. In a murine collagen-induced arthritis model, i.p. administration of DMS significantly inhibited disease severity and reduced articular inflammation and joint destruction. Treatment of DMS also down-regulated serum levels IL-6, TNF-alpha, IFN-gamma, S1P, and IgG1 and IgG2a anti-collagen Ab. Furthermore, DMS-treated mice also displayed suppressed proinflammatory cytokine production in response to type II collagen in vitro. Moreover, similar reduction in incidence and disease activity was observed in mice treated with SphK1 knock-down via small interfering RNA approach. Together, these results demonstrate SphK modulation may provide a novel approach in treating chronic autoimmune conditions such as RA by inhibiting the release of pro-inflammatory cytokines. Topics: Animals; Arthritis, Rheumatoid; Cell Proliferation; Collagen Type II; Cyclooxygenase 2; Cytokines; Disease Models, Animal; Enzyme Inhibitors; Gene Expression Regulation; Humans; Inflammation; Inflammation Mediators; Jurkat Cells; Leukocytes, Mononuclear; Lysophospholipids; Matrix Metalloproteinase 9; Mice; Mice, Inbred DBA; Neovascularization, Physiologic; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid; RNA, Small Interfering; Signal Transduction; Sphingosine; Synovial Fluid; U937 Cells | 2008 |
Aberrant Gi protein coupled receptor-mediated cell survival signaling in rheumatoid arthritis B cell lines.
Sphingosine 1-phosphate (S1P) is a pleiotropic bioactive lipid that transmits potent signals through a family of G protein coupled receptors with resultant anti-apoptotic and pro-angiogenic effects. We have recently reported that lymphoblastoid B cell lines (LCLs) from rheumatoid arthritis (RA) patients are resistant to Fas-mediated cell death due to over-production of S1P, secondary to over-activity of sphingosine kinase-1 (SphK1). Here we investigated the signaling events that S1P triggers in those cells. Our results show that RA-derived LCLs display increased constitutive enzymatic activity of phosphatidylinositol 3-kinase (PI3K). Incubation of LCLs with a PI3K inhibitor wortmannin reversed PI3K over-activity and the resistance to Fas-mediated cell death. Incubation of RA LCLs with nanomolar concentration of S1P triggered exaggerated activation of both SphK and PI3K in RA LCLs compared to control cells. PI3K was mapped upstream of SphK, since wortmannin could block SphK activation by S1P. S1P signaling effect could be blocked by the Gi/G0 protein inhibitor, pertussis toxin and by an inhibitor of S1P-receptor interaction, suramin. S1P receptor expression levels did not appear to be the cause of disparate S1P-triggered signaling, since LCLs from RA patients and their healthy twin controls did not show statistically significant differences in the expression levels of the five known S1P receptors, as determined by quantitative real time reverse transcription-polymerase chain reaction analyses. Thus, we conclude that Fas death signaling aberration in RA LCLs is caused by extracellular S1P, which triggers PI3K-dependent SphK over-activity through a Gi protein-coupled receptor-mediated signaling cascade. Topics: Apoptosis; Arthritis, Rheumatoid; B-Lymphocytes; Cell Line; Cell Survival; GTP-Binding Protein alpha Subunits, Gi-Go; Humans; Lysophospholipids; Phosphatidylinositol 3-Kinases; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid; Signal Transduction; Sphingosine | 2007 |
Sphingosine-1-phosphate attenuates proteoglycan aggrecan expression via production of prostaglandin E2 from human articular chondrocytes.
Sphingosine-1-phosphate (S1P), a downstream metabolite of ceramide, induces various bioactivities via two distinct pathways: as an intracellular second messenger or through receptor activation. The receptor for S1P (S1PR) is the family of Endothelial differentiation, sphingolipid G-protein-coupled receptor (EDG). We have here attempted to reveal the expression of EDG/S1PR in human articular chondrocytes (HAC), exploring the implications of S1P in cartilage degradation.. Articular cartilage specimens were obtained from patients with rheumatoid arthritis (RA), osteoarthritis (OA) or traumatic fracture (representing normal chondrocytes) who underwent joint surgery. Isolated HAC were cultured in vitro by monolayer and stimulated with S1P in the presence or absence of inhibitors of signaling molecules. Stimulated cells and culture supernatants were collected and subjected to analyses using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA).. All of the tested HAC samples showed positive results in terms of EDG/S1PR expression in basal condition. When HAC was stimulated with S1P, a significant increase in prostaglandin (PG) E2 production was observed together with enhanced expression of cyclooxygenase (COX)-2. S1P stimulated extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) in HAC, and the PGE2 induction was abrogated by PD98059 and SB203580. Pertussis toxin inhibited the PGE2 induction from HAC by S1P, suggesting an essential role for Gi protein. S1P also attenuated the expression of proteoglycan aggrecan, a component of cartilage matrix, in HAC at transcriptional level.. It was suggested that the S1P-induced PGE2 was at least in part involved in the aggrecan-suppressing effect of S1P, seeing as COX inhibitors attenuated the effect. Accordingly, S1P might play an important role in cartilage degradation in arthritides. Topics: Aged; Aged, 80 and over; Aggrecans; Arthritis, Rheumatoid; Cartilage, Articular; Chondrocytes; Cyclooxygenase 2; Dinoprostone; Extracellular Signal-Regulated MAP Kinases; Female; Humans; Lysophospholipids; Male; MAP Kinase Signaling System; Membrane Proteins; Middle Aged; Osteoarthritis; p38 Mitogen-Activated Protein Kinases; Receptors, Lysosphingolipid; Second Messenger Systems; Sphingosine; Up-Regulation | 2007 |
Sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 signaling in rheumatoid synovium: regulation of synovial proliferation and inflammatory gene expression.
Sphingosine 1-phosphate (S1P) is involved in various pathologic conditions and has been implicated as an important mediator of angiogenesis, inflammation, cancer, and autoimmunity. This study was undertaken to examine the role of S1P/S1P1 signaling in the pathogenesis of rheumatoid arthritis (RA).. We examined S1P1 messenger RNA (mRNA) and protein levels in RA synoviocytes and MH7A cells by reverse transcriptase-polymerase chain reaction and Western blotting. We also performed S1P1 immunohistochemistry analysis in synovial tissue from 28 RA patients and 18 osteoarthritis (OA) patients. We investigated the effects of S1P on proliferation by WST-1 assay, and its effects on tumor necrosis factor alpha (TNFalpha)- or interleukin-1beta (IL-1beta)-induced cyclooxygenase 2 (COX-2) expression and prostaglandin E2 (PGE2) production in RA synoviocytes and MH7A cells by Western blotting and enzyme-linked immunosorbent assay, respectively. Finally, we examined whether these effects of S1P were sensitive to pertussis toxin (PTX), an inhibitor of the Gi/Go proteins.. S1P1 mRNA and protein were detected in RA synoviocytes and MH7A cells. S1P1 was more strongly expressed in synovial lining cells, vascular endothelial cells, and inflammatory mononuclear cells of RA synovium compared with OA synovium. S1P increased the proliferation of RA synoviocytes and MH7A cells. S1P alone significantly enhanced COX-2 expression and PGE2 production. Moreover, S1P enhanced expression of COX-2 and production of PGE2 induced by stimulation with TNFalpha or IL-1beta in RA synoviocytes and MH7A cells. These effects of S1P were inhibited by pretreatment with PTX.. These findings suggest that S1P signaling via S1P receptors plays an important role in cell proliferation and inflammatory cytokine-induced COX-2 expression and PGE2 production by RA synoviocytes. Thus, regulation of S1P/S1P1 signaling may represent a novel therapeutic target in RA. Topics: Arthritis, Rheumatoid; Blotting, Western; Cell Line; Cyclooxygenase 2; Dinoprostone; Gene Expression; Humans; Immunohistochemistry; Inflammation; Lysophospholipids; Membrane Proteins; Osteoarthritis; Pertussis Toxin; Receptors, Lysosphingolipid; RNA, Messenger; Signal Transduction; Sphingosine; Synovial Membrane; Tissue Culture Techniques; Tumor Necrosis Factor-alpha | 2006 |