sphingosine-1-phosphate has been researched along with Anemia--Sickle-Cell* in 8 studies
1 review(s) available for sphingosine-1-phosphate and Anemia--Sickle-Cell
Article | Year |
---|---|
Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy.
Membrane sphingolipids are metabolized to sphingosine-1-phosphate (S1P), a bioactive lipid mediator that regulates many processes in vertebrate development, physiology, and pathology. Once exported out of cells by cell-specific transporters, chaperone-bound S1P is spatially compartmentalized in the circulatory system. Extracellular S1P interacts with five GPCRs that are widely expressed and transduce intracellular signals to regulate cellular behavior, such as migration, adhesion, survival, and proliferation. While many organ systems are affected, S1P signaling is essential for vascular development, neurogenesis, and lymphocyte trafficking. Recently, a pharmacological S1P receptor antagonist has won approval to control autoimmune neuroinflammation in multiple sclerosis. The availability of pharmacological tools as well as mouse genetic models has revealed several physiological actions of S1P and begun to shed light on its pathological roles. The unique mode of signaling of this lysophospholipid mediator is providing novel opportunities for therapeutic intervention, with possibilities to target not only GPCRs but also transporters, metabolic enzymes, and chaperones. Topics: Acute Lung Injury; Anemia, Sickle Cell; Animals; Autoimmune Diseases; Cardiovascular Diseases; Cell Physiological Phenomena; Disease Models, Animal; Fingolimod Hydrochloride; Hematopoietic Stem Cell Mobilization; Humans; Influenza, Human; Lysophospholipids; Membrane Lipids; Mice; Multiple Sclerosis; Neoplasms; Neovascularization, Physiologic; Neurogenesis; Propylene Glycols; Receptors, Lysosphingolipid; Sphingolipids; Sphingosine | 2015 |
7 other study(ies) available for sphingosine-1-phosphate and Anemia--Sickle-Cell
Article | Year |
---|---|
Blood plasma metabolomics of children and adolescents with sickle cell anaemia treated with hydroxycarbamide: a new tool for uncovering biochemical alterations.
Topics: Acids; Acute Chest Syndrome; Adolescent; Amino Acids; Anemia, Sickle Cell; Antisickling Agents; Arterial Occlusive Diseases; Biomarkers; Butyrates; Child; Chromatography, High Pressure Liquid; Creatine; Creatinine; Female; Humans; Hydroxyurea; Lysophospholipids; Male; Mass Spectrometry; Membrane Lipids; Metabolomics; Models, Biological; Nuclear Magnetic Resonance, Biomolecular; Sphingosine | 2021 |
Sphingosine Kinases as Druggable Targets.
There is substantial evidence that the enzymes, sphingosine kinase 1 and 2, which catalyse the formation of the bioactive lipid sphingosine 1-phosphate, are involved in pathophysiological processes. In this chapter, we appraise the evidence that both enzymes are druggable and describe how isoform-specific inhibitors can be developed based on the plasticity of the sphingosine-binding site. This is contextualised with the effect of sphingosine kinase inhibitors in cancer, pulmonary hypertension, neurodegeneration, inflammation and sickling. Topics: Anemia, Sickle Cell; Binding Sites; Enzyme Inhibitors; Humans; Hypertension, Pulmonary; Inflammation; Lysophospholipids; Neoplasms; Neurodegenerative Diseases; Phosphotransferases (Alcohol Group Acceptor); Sphingosine | 2020 |
Sphingosine-1-phosphate receptor 1 mediates elevated IL-6 signaling to promote chronic inflammation and multitissue damage in sickle cell disease.
Sphingosine-1-phosphate (S1P) is a biolipid involved in chronic inflammation in several inflammatory disorders. Recent studies revealed that elevated S1P contributes to sickling in sickle cell disease (SCD), a devastating hemolytic, genetic disorder associated with severe chronic inflammation and tissue damage. We evaluated the effect of elevated S1P in chronic inflammation and tissue damage in SCD and underlying mechanisms. First, we demonstrated that interfering with S1P receptor signaling by FTY720, a U.S. Food and Drug Administration-approved drug, significantly reduced systemic, local inflammation and tissue damage without antisickling effects. These findings led us to discover that S1P receptor activation leads to substantial elevated local and systemic IL-6 levels in SCD mice. Genetic deletion of IL-6 in SCD mice significantly reduced local and systemic inflammation, tissue damage, and kidney dysfunction. At the cellular level, we determined that elevated IL-6 is a key cytokine functioning downstream of elevated S1P, which contributes to increased S1P receptor 1 ( S1pr1) gene expression in the macrophages of several tissues in SCD mice. Mechanistically, we revealed that S1P-S1PR1 signaling reciprocally up-regulated IL-6 gene expression in primary mouse macrophages in a JAK2-dependent manner. Altogether, we revealed that elevated S1P, coupled with macrophage S1PR1 reciprocally inducing IL-6 expression, is a key signaling network functioning as a malicious, positive, feed-forward loop to sustain inflammation and promote tissue damage in SCD. Our findings immediately highlight novel therapeutic possibilities.-Zhao, S., Adebiyi, M. G., Zhang, Y., Couturier, J. P., Fan, X., Zhang, H., Kellems, R. E., Lewis, D. E., Xia, Y. Sphingosine-1-phosphate receptor 1 mediates elevated IL-6 signaling to promote chronic inflammation and multitissue damage in sickle cell disease. Topics: Anemia, Sickle Cell; Animals; Disease Models, Animal; Gene Expression Regulation; Inflammation; Interleukin-6; Lysophospholipids; Macrophages; Mice; Mice, Knockout; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors | 2018 |
Decreased Serum Levels of Sphingomyelins and Ceramides in Sickle Cell Disease Patients.
Limited data are available on the serum levels of different sphingomyelin (CerPCho) and ceramide (CER) species in sickle-cell disease (SCD). This study was aimed at identifying the levels of C16-C24 CerPCho and C16-C24 CER in serum obtained from SCD patients and controls. Circulating levels of neutral sphingomyelinase (N-SMase) activity, ceramide-1-phosphate (C1P), and sphingosine-1-phosphate (S1P) were also determined. Blood was collected from 35 hemoglobin (Hb)A volunteers and 45 homozygous HbSS patients. Serum levels of C16-C24 CerPCho and C16-C24 CER were determined by an optimized multiple reaction monitoring (MRM) method using ultrafast liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Serum activity of N-SMase was assayed by standard kit methods, and C1P and S1P levels were determined by enzyme-linked immunosorbent assay. A significant decrease was observed in the serum levels of C18-C24 CerPCho in patients with SCD compared to controls. No significant difference was found in C16 CerPCho levels between the two groups. Very-long-chain C22-C24 CER were significantly decreased in SCD, while long-chain C16-C20 CER levels showed no significant difference between SCD patients and controls. Significant positive correlation was found between the serum total cholesterol levels and C18-C24 CerPCho and C22-C24 CER in SCD patients. Patients with SCD had significantly elevated serum activity of N-SMase as well as increased circulating levels of C1P and S1P compared to controls. The decrease in serum levels of C18-C24 CerPCho in patients with SCD was accompanied by decreased levels of C22-C24 CER. Future studies are needed to understand the role of decreased CerPCho and CER in the pathophysiology of SCD. Topics: Adolescent; Anemia, Sickle Cell; Case-Control Studies; Ceramides; Child; Cholesterol, HDL; Cholesterol, LDL; Cholesterol, VLDL; Chromatography, High Pressure Liquid; Female; Humans; Lysophospholipids; Male; Sphingomyelin Phosphodiesterase; Sphingomyelins; Sphingosine; Tandem Mass Spectrometry; Triglycerides | 2018 |
Structural and Functional Insight of Sphingosine 1-Phosphate-Mediated Pathogenic Metabolic Reprogramming in Sickle Cell Disease.
Elevated sphingosine 1-phosphate (S1P) is detrimental in Sickle Cell Disease (SCD), but the mechanistic basis remains obscure. Here, we report that increased erythrocyte S1P binds to deoxygenated sickle Hb (deoxyHbS), facilitates deoxyHbS anchoring to the membrane, induces release of membrane-bound glycolytic enzymes and in turn switches glucose flux towards glycolysis relative to the pentose phosphate pathway (PPP). Suppressed PPP causes compromised glutathione homeostasis and increased oxidative stress, while enhanced glycolysis induces production of 2,3-bisphosphoglycerate (2,3-BPG) and thus increases deoxyHbS polymerization, sickling, hemolysis and disease progression. Functional studies revealed that S1P and 2,3-BPG work synergistically to decrease both HbA and HbS oxygen binding affinity. The crystal structure at 1.9 Å resolution deciphered that S1P binds to the surface of 2,3-BPG-deoxyHbA and causes additional conformation changes to the T-state Hb. Phosphate moiety of the surface bound S1P engages in a highly positive region close to α1-heme while its aliphatic chain snakes along a shallow cavity making hydrophobic interactions in the "switch region", as well as with α2-heme like a molecular "sticky tape" with the last 3-4 carbon atoms sticking out into bulk solvent. Altogether, our findings provide functional and structural bases underlying S1P-mediated pathogenic metabolic reprogramming in SCD and novel therapeutic avenues. Topics: 2,3-Diphosphoglycerate; Anemia, Sickle Cell; Animals; Erythrocytes, Abnormal; Female; Hemoglobin A; Hemoglobin, Sickle; Hemolysis; Humans; Lysophospholipids; Male; Mice; Mice, Transgenic; Oxidative Stress; Pentose Phosphate Pathway; Sphingosine | 2017 |
Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression.
Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates multicellular functions through interactions with its receptors on cell surfaces. S1P is enriched and stored in erythrocytes; however, it is not clear whether alterations in S1P are involved in the prevalent and debilitating hemolytic disorder sickle cell disease (SCD). Here, using metabolomic screening, we found that S1P is highly elevated in the blood of mice and humans with SCD. In murine models of SCD, we demonstrated that elevated erythrocyte sphingosine kinase 1 (SPHK1) underlies sickling and disease progression by increasing S1P levels in the blood. Additionally, we observed elevated SPHK1 activity in erythrocytes and increased S1P in blood collected from patients with SCD and demonstrated a direct impact of elevated SPHK1-mediated production of S1P on sickling that was independent of S1P receptor activation in isolated erythrocytes. Together, our findings provide insights into erythrocyte pathophysiology, revealing that a SPHK1-mediated elevation of S1P contributes to sickling and promotes disease progression, and highlight potential therapeutic opportunities for SCD. Topics: Anemia, Sickle Cell; Animals; Antisickling Agents; Disease Models, Animal; Disease Progression; Enzyme Inhibitors; Erythrocytes, Abnormal; Gene Knockdown Techniques; Hemolysis; Humans; Lysophospholipids; Metabolomics; Methanol; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Mice, Transgenic; Phosphotransferases (Alcohol Group Acceptor); Pyrrolidines; Signal Transduction; Sphingosine; Sulfones | 2014 |
Acid sphingomyelinase is activated in sickle cell erythrocytes and contributes to inflammatory microparticle generation in SCD.
Sphingolipids are a class of lipids containing a backbone of sphingoid bases that can be produced de novo through the reaction of palmitate and serine and further metabolized through the activity of various enzymes to produce intermediates with diverse roles in cellular processes and signal transduction. One of these intermediates, sphingosine 1-phosphate (S1P), is stored at high concentrations (1 μM) in red blood cells (RBCs) and directs a wide array of cellular processes mediated by 5 known G-protein coupled receptors (S1P1-S1P5). In this study, we show that RBC membrane alterations in sickle cell disease enhance the activation acid sphingomyelinase by 13%, resulting in increased production and storage of sphingosine (2.6-fold) and S1P (3.5-fold). We also show that acid sphingomyelinase enhances RBC-derived microparticle (MP) generation. These MPs are internalized by myeloid cells and promote proinflammatory cytokine secretion and endothelial cell adhesion, suggesting that potential crosstalk between circulating inflammatory cells and MPs may contribute to the inflammation-rooted pathogenesis of the disease. Treatment with amitriptyline reduces MP generation in vitro and in vivo and might be used to mitigate inflammatory processes in sickle cell disease. Topics: Anemia, Sickle Cell; Animals; Cell Adhesion; Cell Adhesion Molecules; Cell-Derived Microparticles; Disease Models, Animal; Endothelial Cells; Erythrocytes, Abnormal; Hemoglobin, Sickle; Humans; Inflammation; Lysophospholipids; MAP Kinase Signaling System; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Mice, Transgenic; Sphingolipids; Sphingomyelin Phosphodiesterase; Sphingosine | 2014 |