sphingosine-1-phosphate has been researched along with Albuminuria* in 5 studies
5 other study(ies) available for sphingosine-1-phosphate and Albuminuria
Article | Year |
---|---|
Detrimental role of sphingosine kinase 1 in kidney damage in DOCA-salt hypertensive model: evidence from knockout mice.
Sphingosine-1-phosphate (S1P) is a bioactive metabolite of sphingolipids and produced by sphingosine kinases (SphK1 and SphK2). SphK1/S1P pathway is implicated in the progression of chronic kidney disease. However, the role of SphK1/S1P pathway in renal injury in hypertension has not been reported. This study tested the hypothesis that SphK1/S1P pathway mediates the kidney damage in DOCA-salt hypertensive mice.. Male wild type (WT) C57BL6 and SphK1 knockout (KO) mice were subjected to unilateral nephrectomy, subcutaneous implant containing 50 mg of deoxycorticosterone acetate (DOCA) and 1% NaCl drinking water for 7 weeks. At the end of experiments, blood pressure data, 24 h urine and kidney samples were collected. Renal mRNA levels of SphK1 were measured by real-time RT-PCR. Markers for fibrogenesis and immune cell infiltration in kidneys were detected using Western blot and immunohistochemistray analysis, respectively. The glomerular morphological changes were examined in kidney tissue slides stained with Periodic-Acid Schiff. Four groups were studied: wild type control (WT-C), WT-DOCA, KO-C and KO-DOCA.. The renal SphK1 mRNA expression was significantly upregulated in WT-DOCA mice, whereas this upregulation of renal SphK1 mRNA was blocked in KO-DOCA mice. There was no difference in DOCA-salt-induced hypertension between WT and KO mice. The urinary albumin was increased in both DOCA-salt groups. However, the albuminuria was significantly lower in KO-DOCA than in WT-DOCA group. There were increases in glomerulosclerosis indices in both DOCA-salt groups, whereas the increases were also significantly lower in KO-DOCA than in WT-DOCA mice. Renal protein levels of α-smooth muscle actin were upregulated in both DOCA-salt groups, but the increase was significant lower in KO-DOCA than in WT-DOCA group. The increased staining areas of collagen detected by Sirius Red-staining in kidney tissue sections were also attenuated in KO-DOCA compared with WT-DOCA mice. In contrast, the increased infiltration of CD43+ (a T cell marker) or CD68+ (a macrophage marker) cells in DOCA-salt kidneys showed no significant difference between WT-DOCA and KO-DOCA mice.. SphK1/S1P signaling pathway mediates kidney damage in DOCA-salt hypertensive mice independent of blood pressure and immune modulation. Topics: Actins; Albuminuria; Animals; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Blotting, Western; Collagen; Desoxycorticosterone Acetate; Disease Models, Animal; Fibrosis; Hypertension; Immunohistochemistry; Kidney; Leukosialin; Lysophospholipids; Macrophages; Male; Mice; Mice, Knockout; Mineralocorticoids; Nephrectomy; Phosphotransferases (Alcohol Group Acceptor); Renal Insufficiency, Chronic; RNA, Messenger; Signal Transduction; Sodium Chloride, Dietary; Sphingosine; T-Lymphocytes | 2020 |
The effect of nephropathy on plasma sphingosine 1-phosphate concentrations in patients with type 2 diabetes.
Sphingosine 1-phosphate (S1P) is carried in plasma by the HDL particles and albumin. It mediates several protective functions of HDL. Because of its barrier-enhancing effect, it has attracted attention in diseases associated with endothelial dysfunction. We examined the impact of circulating levels of S1P in diabetic nephropathy together with apoprotein M, a S1P-binding protein in HDL. Plasma levels of dimethylarginines were evaluated in this context.. Patients with type 2 diabetes mellitus were divided into three groups according to daily albumin excretion: normoalbuminuria, microalbuminuria and macroalbuminuria (n=30 in each). In addition to routine analysis, S1P and apo M in plasma were measured using the enzyme-linked immunosorbent assays. Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and l-arginine were determined by HPLC. Tukey's or Mann-Whitney U-test was used for the statistics.. Plasma S1P levels showed a significant decline in parallel to kidney dysfunction. The highest significance was detected in the macroalbuminuric group. Although a significant increase in plasma SDMA in albuminuric groups was observed, apo M, l-arginine and ADMA levels were similar between the groups.. Low plasma levels of S1P seemed to be associated with diabetic nephropathy. The main reason for the decreased S1P levels in our patients seems to be severe urinary albumin loss due to nephropathy. Low levels of S1P in patients with nephropathy may adversely affect the endothelial integrity and barrier function, thus causing a vicious circle. Topics: Albuminuria; Apolipoproteins; Apolipoproteins M; Arginine; Biological Transport; Cholesterol, HDL; Cholesterol, LDL; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Female; Humans; Lipocalins; Lysophospholipids; Male; Middle Aged; Sphingosine; Triglycerides | 2015 |
FTY720 inhibits tubulointerstitial inflammation in albumin overload-induced nephropathy of rats via the Sphk1 pathway.
FTY720, a new immunomodulatory drug with low cytotoxicity, is currently used to treat multiple sclerosis. In this study, we investigated the effects of FTY720 on inflammatory cell infiltration in albumin overload-induced nephropathy of rats.. Male Wistar rats were subjected to right-side nephrectomy and divided into 3 groups. One week after the surgery, albumin overload (AO) group was treated with BSA (5 g·kg(-1)·d(-1), ip) for 9 weeks; AO+FTY720 group was given BSA (5 g·kg(-1)·d(-1), ip) plus FTY720 (0.5 g·kg(-1)·d(-1), ip) for 9 weeks; and control group received daily ip injection of equivalent volume of saline. All rats were killed 9 weeks after nephrectomy.. AO rats exhibited gradually increased urinary protein excretion accompanied by elevated urinary N-acetyl-β-O-glucosaminidase activity, and both reached their peak values at week 7. Furthermore, AO significantly increased lymphocytes and monocytes in circulation and the inflammatory cells recruited to tubulointerstitium, and the expression of inflammatory cytokines MCP-1, TNF-α and IL-6, as well as sphingosine 1-phosphate (S1P) receptors S1pr1 and S1pr3, and S1P-synthesizing enzyme sphingosine kinase 1 (Sphk1) in the kidney. Concomitant administration of FTY720 significantly attenuated all the AO-induced pathological changes.. FTY720 alleviates tubulointerstitium inflammation in an AO rat model of nephropathy via down-regulation of the Sphk1 pathway. Topics: Acetylglucosaminidase; Albuminuria; Animals; Anti-Inflammatory Agents; Disease Models, Animal; Down-Regulation; Fingolimod Hydrochloride; Immunosuppressive Agents; Inflammation Mediators; Kidney Tubules; Lymphocytes; Lysophospholipids; Macrophages; Male; Nephritis, Interstitial; Phosphotransferases (Alcohol Group Acceptor); Propylene Glycols; Rats, Wistar; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Time Factors | 2014 |
Berberine ameliorates renal injury in diabetic C57BL/6 mice: Involvement of suppression of SphK-S1P signaling pathway.
Berberine (BBR) was previously found to have beneficial effects on renal injury in experimental diabetic rats. However, the mechanisms underlying the effects are not fully understood. Sphingosine kinase-Sphingosine 1-phosphate (SphK-S1P) signaling pathway has been implicated in the pathogenesis of diabetic nephropathy (DN). The aim of this study was to investigate the effects of BBR on renal injury and the activation of SphK-S1P signaling pathway in alloxan-induced diabetic mice with nephropathy. Alloxan-induced diabetic mice were treated orally with BBR (300 mg/kg/day) or vehicle for 12 weeks. BBR inhibited the increases in fasting blood glucose, kidney/body weight ratio, blood urea nitrogen, serum creatinine and 24-h albuminuria in diabetic mice. It also prevented renal hypertrophy, TGF-beta1 synthesis, FN and Col IV accumulation. Moreover, BBR down-regulated the elevated staining, activity and levels of mRNA and protein of SphK1, and S1P production as well. These findings suggest that the inhibitory effect of BBR on the activation of SphK-S1P signaling pathway in diabetic mouse kidney is a novel mechanism by which BBR partly exerts renoprotective effects on DN. Topics: Albuminuria; Animals; Berberine; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Glucose; Kidney; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Phosphotransferases (Alcohol Group Acceptor); Random Allocation; Signal Transduction; Sphingosine; Transforming Growth Factor beta1 | 2010 |
Transforming growth factor-beta2 upregulates sphingosine kinase-1 activity, which in turn attenuates the fibrotic response to TGF-beta2 by impeding CTGF expression.
Transforming growth factor-beta2 (TGF-beta2) stimulates the expression of pro-fibrotic connective tissue growth factor (CTGF) during the course of renal disease. Because sphingosine kinase-1 (SK-1) activity is also upregulated by TGF-beta, we studied its effect on CTGF expression and on the development of renal fibrosis. When TGF-beta2 was added to an immortalized human podocyte cell line we found that it activated the promoter of SK-1, resulting in upregulation of its mRNA and protein expression. Further, depletion of SK-1 by small interfering RNA or its pharmacological inhibition led to accelerated CTGF expression in the podocytes. Over-expression of SK-1 reduced CTGF induction, an effect mediated by intracellular sphingosine-1-phosphate. In vivo, SK-1 expression was also increased in the podocytes of kidney sections of patients with diabetic nephropathy when compared to normal sections of kidney obtained from patients with renal cancer. Similarly, in a mouse model of streptozotocin-induced diabetic nephropathy, SK-1 and CTGF were upregulated in podocytes. In SK-1 deficient mice, exacerbation of disease was detected by increased albuminuria and CTGF expression when compared to wild-type mice. Thus, SK-1 activity has a protective role in the fibrotic process and its deletion or inhibition aggravates fibrotic disease. Topics: Albuminuria; Animals; Cell Line; Connective Tissue Growth Factor; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Down-Regulation; Fibrosis; Gene Expression Regulation, Enzymologic; Humans; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mutation; Phosphotransferases (Alcohol Group Acceptor); Podocytes; Promoter Regions, Genetic; Protein Kinase Inhibitors; RNA Interference; RNA, Messenger; Smad4 Protein; Sphingosine; Time Factors; Transforming Growth Factor beta1; Transforming Growth Factor beta2; Up-Regulation | 2009 |