sphingosine-1-phosphate has been researched along with Adenocarcinoma-of-Lung* in 5 studies
5 other study(ies) available for sphingosine-1-phosphate and Adenocarcinoma-of-Lung
Article | Year |
---|---|
Resveratrol Affects Sphingolipid Metabolism in A549 Lung Adenocarcinoma Cells.
Resveratrol is a naturally occurring polyphenol which has various beneficial effects, such as anti-inflammatory, anti-tumor, anti-aging, antioxidant, and neuroprotective effects, among others. The anti-cancer activity of resveratrol has been related to alterations in sphingolipid metabolism. We analyzed the effect of resveratrol on the enzymes responsible for accumulation of the two sphingolipids with highest functional activity-apoptosis promoting ceramide (CER) and proliferation-stimulating sphingosine-1-phosphate (S1P)-in human lung adenocarcinoma A549 cells. Resveratrol treatment induced an increase in CER and sphingosine (SPH) and a decrease in sphingomyelin (SM) and S1P. Our results showed that the most common mode of CER accumulation, through sphingomyelinase-induced hydrolysis of SM, was not responsible for a CER increase despite the reduction in SM in A549 plasma membranes. However, both the activity and the expression of CER synthase 6 were upregulated in resveratrol-treated cells, implying that CER was accumulated as a result of stimulated de novo synthesis. Furthermore, the enzyme responsible for CER hydrolysis, alkaline ceramidase, was not altered, suggesting that it was not related to changes in the CER level. The enzyme maintaining the balance between apoptosis and proliferation, sphingosine kinase 1 (SK1), was downregulated, and its expression was reduced, resulting in a decrease in S1P levels in resveratrol-treated lung adenocarcinoma cells. In addition, incubation of resveratrol-treated A549 cells with the SK1 inhibitors DMS and fingolimod additionally downregulated SK1 without affecting its expression. The present studies provide information concerning the biochemical processes underlying the influence of resveratrol on sphingolipid metabolism in A549 lung cancer cells and reveal possibilities for combined use of polyphenols with specific anti-proliferative agents that could serve as the basis for the development of complex therapeutic strategies. Topics: A549 Cells; Adenocarcinoma of Lung; Alkaline Ceramidase; Antioxidants; Biochemical Phenomena; Ceramides; Fingolimod Hydrochloride; Humans; Lysophospholipids; Neuroprotective Agents; Polyphenols; Resveratrol; Sphingolipids; Sphingomyelin Phosphodiesterase; Sphingomyelins; Sphingosine | 2022 |
Sphingosine-1-Phosphate Contributes to TLR9-Induced TNF-α Release in Lung Tumor Cells.
Sphingosine-1-phosphate (S1P) is a membrane-derived bioactive phospholipid involved in many lung physiological and pathological processes. Higher levels of S1P have been registered in a broad range of respiratory diseases, including inflammatory disorders and cancer. The aim of our study was to understand the role of S1P in healthy versus tumor cells after Toll-Like Receptors (TLRs) activation, well-known modulators of sphingolipid metabolism.. Lung adenocarcinoma cells and non-pathological human fibroblasts were stimulated with unmethylated Cytosine phosphate Guanosine (CpG), the TLR9 ligand, and S1P-dependent TNF-α release was evaluated by means of ELISA. Immunofluorescence and LC-MS/MS analysis were performed to evaluate/quantify S1P generation following TLR9 activation.. We found that S1P was involved in TLR9-induced TNF-α release in that the inhibition of both ceramidase and sphingosine kinase I/II (SPHK I/II) significantly reduced the levels of TNF-α after TLR9 triggering in lung adenocarcinoma cells. These results were not observed in healthy fibroblasts, implying that this pathway was mainly involved in pathological conditions. Moreover, the activation of TLR4 by means of LPS did not have similar effects as in the case of CpG-stimulated TLR9. Importantly, the activation of TLR9 induced S1P generation and allowed it to interact on the outside membrane receptor S1P. Our study identifies a novel inflammatory pathway in that TLR9 increases the pro-inflammatory cytokine release, such as TNF-α, via the induction of a ceramide/S1P imbalance in favor of S1P, adding a novel puzzle piece in TLR9-orchestrated inflammatory pathway and shedding more light on the role of the higher levels of S1P during inflammatory conditions. Topics: A549 Cells; Adenocarcinoma of Lung; Blotting, Western; Fluorescent Antibody Technique; Humans; Inflammation; Lung; Lung Neoplasms; Lysophospholipids; Sphingosine; Tandem Mass Spectrometry; Toll-Like Receptor 9; Tumor Necrosis Factor-alpha | 2021 |
Dimethylsphingosine and miltefosine induce apoptosis in lung adenocarcinoma A549 cells in a synergistic manner.
Lung cancer is one of the most common and lethal types of oncological diseases. Despite the advanced therapeutic approaches, the prognosis for lung cancer still remains poor. Apparently, there is an imperative need for more efficient therapeutic strategies. In this work we report that concurrent treatment of human adenocarcinoma A549 cells with specific concentrations of two antitumor agents, the sphingosine kinase 1 inhibitor N, N dimethylsphingosine (DMS) and the alkylphosphocholine miltefosine, induced synergistic cytotoxic effect, which was confirmed by calculation of the combination index. The simultaneous action of these agents, induced significant decrease of A549 cell number, as well as pronounced morphological alterations. Combined drugs caused substantial apoptotic events, and significant reduction of the pro-survival marker sphingosine- 1-phosphate (S1P), when compared to the individual treatments with each of the anticancer drugs alone. Miltefosine is known to affect the synthesis of choline-containing phospholipids, including sphingomyelin, but we report for the first time that it also reduces S1P. Here we suggest a putative mechanism underlying the effect of miltefosine on sphingosine kinase 1, involving miltefosine-induced inhibition of protein kinase C. In conclusion, our findings provide a possibility for treatment of lung cancer cells with lower concentrations of the two antitumor drugs, DMS and miltefosine, which is favorable, regarding their potential cytotoxicity to normal cells. Topics: A549 Cells; Adenocarcinoma of Lung; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Drug Synergism; Humans; Lysophospholipids; Phosphorylcholine; Phosphotransferases (Alcohol Group Acceptor); Protein Kinase Inhibitors; Sphingosine | 2019 |
Angiotensin II drives the production of tumor-promoting macrophages.
Macrophages frequently infiltrate tumors and can enhance cancer growth, yet the origins of the macrophage response are not well understood. Here we address molecular mechanisms of macrophage production in a conditional mouse model of lung adenocarcinoma. We report that overproduction of the peptide hormone Angiotensin II (AngII) in tumor-bearing mice amplifies self-renewing hematopoietic stem cells (HSCs) and macrophage progenitors. The process occurred in the spleen but not the bone marrow, and was independent of hemodynamic changes. The effects of AngII required direct hormone ligation on HSCs, depended on S1P(1) signaling, and allowed the extramedullary tissue to supply new tumor-associated macrophages throughout cancer progression. Conversely, blocking AngII production prevented cancer-induced HSC and macrophage progenitor amplification and thus restrained the macrophage response at its source. These findings indicate that AngII acts upstream of a potent macrophage amplification program and that tumors can remotely exploit the hormone's pathway to stimulate cancer-promoting immunity. Topics: Adenocarcinoma; Adenocarcinoma of Lung; Angiotensin II; Animals; Carcinoma, Non-Small-Cell Lung; Cell Communication; Cell Movement; Cell Proliferation; Gene Expression; Hematopoietic Stem Cells; Humans; Lung Neoplasms; Lysophospholipids; Macrophages; Mice; Mice, Transgenic; Signal Transduction; Sphingosine; Spleen; Tumor Burden | 2013 |
Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells.
Sphingosine-1-phosphate (S1P) regulates a wide array of biological functions. However, the role of S1P signaling in tumorigenesis remains to be elucidated. In this study, we show that S1P receptor subtype 3 (S1P₃) is markedly up-regulated in a subset of lung adenocarcinoma cells compared to normal lung epithelial cells. Specific knockdown of S1P₃ receptors inhibits proliferation and anchorage-independent growth of lung adenocarcinoma cells. Mechanistically, we demonstrate that S1P₃ signaling increases epidermal growth factor receptor (EGFR) expression via the Rho kinase (ROCK) pathway in lung adenocarcinoma cells. Nuclear run-off analysis indicates that S1P/S1P₃ signaling transcriptionally increases EGFR expression. Knockdown of S1P₃ receptors diminishes the S1P-stimulated EGFR expression in lung adenocarcinoma cells. Moreover, S1P treatment greatly enhances EGF-stimulated colony formation, proliferation and invasion of lung adenocarcinoma cells. Together, these results suggest that the enhanced S1P₃-EGFR signaling axis may contribute to the tumorigenesis or progression of lung adenocarcinomas. Topics: Adenocarcinoma; Adenocarcinoma of Lung; Animals; Carcinoma, Lewis Lung; Cell Line, Tumor; Cell Movement; Cell Proliferation; Epidermal Growth Factor; ErbB Receptors; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Lysophospholipids; Mice; Neoplasm Invasiveness; Receptors, Lysosphingolipid; rho-Associated Kinases; RNA Interference; RNA, Messenger; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Time Factors; Transcriptional Activation; Transfection; Up-Regulation | 2012 |