sorbinil has been researched along with Colonic-Neoplasms* in 2 studies
2 other study(ies) available for sorbinil and Colonic-Neoplasms
Article | Year |
---|---|
Inhibition of aldose reductase prevents growth factor-induced G1-S phase transition through the AKT/phosphoinositide 3-kinase/E2F-1 pathway in human colon cancer cells.
Colon cancer is the leading cause of cancer death in both men and women worldwide. The deregulated cell cycle control or decreased apoptosis of normal epithelial cells leading to uncontrolled proliferation is one of the major features of tumor progression. We have previously shown that aldose reductase (AR), a NADPH-dependent aldo-keto reductase, has been shown to be involved in growth factor-induced proliferation of colon cancer cells. Herein, we report that inhibition of AR prevents epidermal growth factor (EGF)- and basic fibroblast growth factor (bFGF)-induced HT29 cell proliferation by accumulating cells at G(1) phase of cell cycle. Similar results were observed in SW480 and HCT-116 colon cancer cells. Treatment of HT29 cells with AR inhibitor, sorbinil or zopolrestat, prevented the EGF- and bFGF-induced DNA binding activity of E2F-1 and phosphorylation of retinoblastoma protein. Inhibition of AR also prevented EGF- and bFGF-induced phosphorylation of cyclin-dependent kinase (cdk)-2 and expression of G(1)-S transition regulatory proteins such as cyclin D1, cdk4, proliferating cell nuclear antigen, cyclin E, and c-myc. More importantly, inhibition of AR prevented the EGF- and bFGF-induced activation of phosphoinositide 3-kinase/AKT and reactive oxygen species generation in colon cancer cells. Further, inhibition of AR also prevented the tumor growth of human colon cancer cells in nude mouse xenografts. Collectively, these results show that AR mediates EGF- and bFGF-induced colon cancer cell proliferation by activating or expressing G(1)-S phase proteins such as E2F-1, cdks, and cyclins through the reactive oxygen species/phosphoinositide 3-kinase/AKT pathway, indicating the use of AR inhibitors in the prevention of colon carcinogenesis. Mol Cancer Ther; 9(4); 813-24. (c)2010 AACR. Topics: Aldehyde Reductase; Animals; Benzothiazoles; Cell Cycle; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; DNA, Neoplasm; E2F1 Transcription Factor; G1 Phase; Gene Expression Regulation, Neoplastic; Humans; Imidazolidines; Intercellular Signaling Peptides and Proteins; Mice; Neoplasm Proteins; Phosphatidylinositol 3-Kinases; Phosphorylation; Phthalazines; Protein Binding; Proto-Oncogene Proteins c-akt; Retinoblastoma Protein; RNA, Messenger; S Phase; Signal Transduction; Xenograft Model Antitumor Assays | 2010 |
Aldose reductase regulates growth factor-induced cyclooxygenase-2 expression and prostaglandin E2 production in human colon cancer cells.
Inhibition of prostaglandin E(2) (PGE(2)) and cyclooxygenase (COX)-2 by nonsteroidal anti-inflammatory drugs reduces the progression of colon cancer. Inhibition of aldose reductase (AR; EC. 1.1.1.21.) by sorbinil or by antisense ablation prevented fibroblast growth factor-induced and platelet-derived growth factor-induced up-regulation of PGE(2) synthesis in human colon cancer cells, Caco-2. AR besides reducing aldo-sugars efficiently reduces toxic lipid aldehydes and their conjugates with glutathione. Inhibition of AR prevented growth factor-induced COX-2 activity, protein, and mRNA and significantly decreased activation of nuclear factor-kappaB and protein kinase C (PKC) and phosphorylation of PKC-beta2 as well as progression of Caco-2 cell growth but had no effect on COX-1 activity. Cell cycle analysis suggests that inhibition of AR prevents growth factor-induced proliferation of Caco-2 cells at S phase. Treatment of Caco-2 cells with the most abundant and toxic lipid aldehyde 4-hydroxy-trans-2-nonenal (HNE) or its glutathione-conjugate [glutathionyl-HNE (GS-HNE)] or AR-catalyzed product of GS-HNE, glutathionyl-1,4-dihydroxynonane (GS-DHN), resulted in increased COX-2 expression and PGE(2) production. Inhibition of AR prevented HNE- or GS-HNE-induced but not GS-DHN-induced up-regulation of COX-2 and PGE(2). More importantly, in vivo studies showed that administration of AR-small interfering RNA (siRNA), but not control siRNA, to nude mice bearing SW480 human colon adenocarcinoma cells completely arrested tumor progression. Collectively, these observations suggest that AR is an obligatory mediator of growth factor-induced up-regulation of COX-2, PGE(2), and growth of Caco-2 cells, indicating that inhibition of AR may be a novel therapeutic approach in preventing the progression of colon cancer. Topics: Adenocarcinoma; Aldehyde Reductase; Aldehydes; Animals; Colonic Neoplasms; Cyclooxygenase 2; Dinoprostone; Fibroblast Growth Factor 2; Glutathione; Humans; Imidazolidines; Mice; Mice, Nude; Neoplasm Proteins; NF-kappa B; Platelet-Derived Growth Factor; Protein Kinase C; RNA, Small Interfering; S Phase; Xenograft Model Antitumor Assays | 2006 |