Page last updated: 2024-09-05

sorafenib and Reperfusion Injury

sorafenib has been researched along with Reperfusion Injury in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's3 (75.00)24.3611
2020's1 (25.00)2.80

Authors

AuthorsStudies
Capelletti, MM; Manceau, H; Peoc'h, K; Puy, H1
Augustyns, K; Bräsen, JH; Feldmann, F; Fulda, S; Goossens, V; Hofmans, S; Jeong, M; Joossens, J; Lee, EW; Linkermann, A; Martens, S; Song, J; Takahashi, N; Tonnus, W; Van der Veken, P; Vandenabeele, P1
Fulda, S1
Chan, CC; Huang, YT; Lee, KC; Lee, TY; Lin, HC; Yang, YY; Yeh, YC1

Reviews

2 review(s) available for sorafenib and Reperfusion Injury

ArticleYear
Ferroptosis in Liver Diseases: An Overview.
    International journal of molecular sciences, 2020, Jul-11, Volume: 21, Issue:14

    Topics: alpha-Tocopherol; Animals; Autophagy; Chemical and Drug Induced Liver Injury; Cyclohexylamines; Cysteine; Ferroptosis; Glutathione; Heme; Humans; Iron; Kelch-Like ECH-Associated Protein 1; Lipid Peroxidation; Lipoxygenase; Liver Diseases; Liver Neoplasms; Oxidative Stress; Phenylenediamines; Phospholipid Hydroperoxide Glutathione Peroxidase; Piperazines; Quinoxalines; Reactive Oxygen Species; Reperfusion Injury; Signal Transduction; Sorafenib; Spiro Compounds; Sulfasalazine; Tumor Suppressor Protein p53

2020
Repurposing anticancer drugs for targeting necroptosis.
    Cell cycle (Georgetown, Tex.), 2018, Volume: 17, Issue:7

    Topics: Animals; Anti-Inflammatory Agents; Antineoplastic Agents; Antioxidants; Apoptosis; Drug Repositioning; Humans; Imidazoles; Indazoles; Necrosis; Oximes; Pyridazines; Pyrimidines; Reperfusion Injury; Sorafenib; Sulfonamides; Systemic Inflammatory Response Syndrome; Vemurafenib

2018

Other Studies

2 other study(ies) available for sorafenib and Reperfusion Injury

ArticleYear
Sorafenib tosylate inhibits directly necrosome complex formation and protects in mouse models of inflammation and tissue injury.
    Cell death & disease, 2017, 06-29, Volume: 8, Issue:6

    Topics: Animals; Apoptosis; Cell Death; Disease Models, Animal; Humans; Inflammation; Mice; Necrosis; Niacinamide; Phenylurea Compounds; Phosphorylation; Protein Kinases; Receptor-Interacting Protein Serine-Threonine Kinases; Reperfusion Injury; Sorafenib; Tumor Necrosis Factor-alpha

2017
Rho-kinase-dependent pathway mediates the hepatoprotective effects of sorafenib against ischemia/reperfusion liver injury in rats with nonalcoholic steatohepatitis.
    Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society, 2012, Volume: 18, Issue:11

    Topics: Animals; Apoptosis; Disease Models, Animal; Fatty Liver; Gene Expression Regulation, Enzymologic; Hemodynamics; Inflammation; Liver; Male; MAP Kinase Signaling System; Necrosis; Niacinamide; Non-alcoholic Fatty Liver Disease; Phenylurea Compounds; Protein Kinase Inhibitors; Rats; Rats, Sprague-Dawley; Reperfusion Injury; rho-Associated Kinases; RNA, Messenger; Sorafenib; Transplantation, Homologous

2012