sorafenib has been researched along with Astrocytoma, Grade IV in 26 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 23 (88.46) | 24.3611 |
2020's | 3 (11.54) | 2.80 |
Authors | Studies |
---|---|
Meng, F; Ni, D; Qiu, X; Wei, J; Xia, Y; Zhong, Z | 1 |
Gudkov, SV; Khabatova, VV; Turovsky, EA; Varlamova, EG | 1 |
Jakubowicz-Gil, J; Langner, E; Maciejczyk, A; Rzeski, W; Skalicka-Woźniak, K; Sumorek-Wiadro, J; Zając, A | 1 |
Clavreul, A; Lautram, N; Menei, P; Montero-Menei, CN; Pourbaghi-Masouleh, M; Roger, E | 1 |
Abrey, LE; Aldape, K; Chang, S; Cloughesy, TF; Dancey, JE; DeAngelis, LM; Drappatz, J; Ebiana, VA; Gilbert, M; Kuhn, J; Levin, VA; Lieberman, F; Mehta, MP; Nghiemphu, PL; Prados, M; Robins, HI; Wen, P; Wright, JJ; Yung, WKA | 1 |
Abdel Gaber, SA; Abdel Kader, MH; Hüttenberger, D; Müller, P; Stepp, H; Wittig, R; Zimmermann, W | 1 |
Anderson, SK; Buckner, JC; Dancey, J; Erickson, BJ; Flynn, PJ; Galanis, E; Giannini, C; Jaeckle, KA; Kaluza, V; Sarkaria, JN; Schiff, D; Schwerkoske, JF; Stella, P; Twohy, E; Wright, J | 1 |
Clavreul, A; Lemaire, L; Menei, P; Pourbaghi-Masouleh, M; Roger, E; Tétaud, C | 1 |
Baek, JH; Cho, JM; Hwang, SG; Jo, Y; Kim, EH; Kim, H; Kim, JS; Kim, JY; Sai, S; Yoon, M | 1 |
Anderson, SK; Buckner, JC; Flynn, PJ; Galanis, E; Giannini, C; Jaeckle, KA; Kaufmann, TJ; Kimlinger, TK; Kumar, SK; Lafky, JM; Northfelt, DW; Uhm, JH | 1 |
Amoroso, D; Andreuccetti, M; Falcone, A; Fontana, A; Galli, C; Galli, L; Landi, L; Lombardi, G; Porta, C; Zagonel, V; Zustovich, F | 1 |
Bądziul, D; Jakubowicz-Gil, J; Langner, E; Rzeski, W; Wertel, I | 1 |
Aktaş, E; Aras, Y; Aydoseli, A; Bilir, A; Civelek, E; Ergüven, M; Gürtekin, M; Imer, M; Sabancι, PA; Yazιhan, N | 1 |
Ben Aissa, A; Bodmer, A; Dietrich, PY; Dunkel, N; Espeli, V; Hottinger, AF; Hundsberger, T; Mach, N; Schaller, K; Squiban, D; Vargas, MI; Weber, DC | 1 |
Dent, P; Grant, S; Hamed, HA; Poklepovic, A; Tavallai, S | 1 |
Dai, Y; Liu, X; Sun, K; Wang, H | 1 |
Dikomey, E; Köcher, S; Kriegs, M; Müller-Goebel, J; Petersen, C; Riedel, M; Rothkamm, K; Struve, N | 1 |
Brown, C; Buettner, R; Hedvat, M; Jensen, M; Jove, R; Schroeder, A; Scuto, A; Starr, R; Yang, F | 1 |
Bigner, DD; Desjardins, A; Friedman, AH; Friedman, HS; Gururangan, S; Herndon, JE; Janney, D; Marcello, J; McLendon, RE; Peters, K; Reardon, DA; Sampson, JH; Vredenburgh, JJ | 1 |
Guha-Thakurta, N; Korshunov, A; Pfister, S; Remke, M; Rokes, CA; Witt, O; Wolff, JE | 1 |
Altieri, DC; Gilbert, CA; Raskett, CM; Ross, AH; Siegelin, MD | 1 |
Clark, BL; Ervin, T; Friedman, E; Hainsworth, JD; Lamar, RE; Murphy, PB; Priego, V | 1 |
Banzato, A; Bertorelle, R; Ciccarino, P; Della Puppa, A; Denaro, L; Farina, P; Fiduccia, P; Gardiman, MP; Lombardi, G; Polo, V; Zagonel, V; Zustovich, F | 1 |
Abrey, L; Aldape, K; Chang, SM; Cloughesy, TF; Dancey, JE; DeAngelis, LM; Drappatz, J; Gilbert, MR; Kuhn, J; Lamborn, KR; Lee, EQ; Levin, VA; Lieberman, F; Mehta, MP; Prados, MD; Robins, HI; Wen, PY; Wright, JJ; Yung, WK | 1 |
Barbieri, F; Carra, E; Daga, A; Favoni, RE; Florio, T; Marubbi, D; Pattarozzi, A | 1 |
Ahluwalia, MS; Grossman, SA; Hilderbrand, SL; Mikkelsen, T; Nabors, LB; Peereboom, DM; Phuphanich, S; Rosenfeld, MR; Supko, JG; Ye, X | 1 |
1 review(s) available for sorafenib and Astrocytoma, Grade IV
Article | Year |
---|---|
Hypertension as a biomarker in patients with recurrent glioblastoma treated with antiangiogenic drugs: a single-center experience and a critical review of the literature.
Topics: Adult; Aged; Aged, 80 and over; Angiogenesis Inhibitors; Antibodies, Monoclonal, Humanized; Bevacizumab; Blood Pressure; Disease-Free Survival; Female; Follow-Up Studies; Glioblastoma; Humans; Hypertension; Magnetic Resonance Imaging; Male; Middle Aged; Multivariate Analysis; Neoplasm Recurrence, Local; Niacinamide; Phenylurea Compounds; Retrospective Studies; Sorafenib; Survival Rate; Time Factors; Treatment Outcome; Young Adult | 2013 |
9 trial(s) available for sorafenib and Astrocytoma, Grade IV
Article | Year |
---|---|
Phase I study of sorafenib and tipifarnib for recurrent glioblastoma: NABTC 05-02.
Topics: Adult; Aged; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Female; Glioblastoma; Humans; Male; Maximum Tolerated Dose; Middle Aged; Neoplasm Recurrence, Local; Quinolones; Sorafenib; Treatment Outcome | 2018 |
Phase 1/2 trial of temsirolimus and sorafenib in the treatment of patients with recurrent glioblastoma: North Central Cancer Treatment Group Study/Alliance N0572.
Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Female; Follow-Up Studies; Glioblastoma; Humans; Male; Maximum Tolerated Dose; Middle Aged; Neoplasm Recurrence, Local; Prognosis; Sirolimus; Sorafenib; Survival Rate | 2018 |
Phase II study of bevacizumab in combination with sorafenib in recurrent glioblastoma (N0776): a north central cancer treatment group trial.
Topics: Adult; Aged; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Bevacizumab; Biomarkers, Tumor; Brain Neoplasms; Disease-Free Survival; Female; Glioblastoma; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Male; Middle Aged; Neoplasm Recurrence, Local; Neoplastic Cells, Circulating; Niacinamide; Phenylurea Compounds; Polymorphism, Single Nucleotide; Proportional Hazards Models; Sorafenib; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-2 | 2013 |
Sorafenib plus daily low-dose temozolomide for relapsed glioblastoma: a phase II study.
Topics: Adult; Aged; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Dacarbazine; Disease Progression; Dose-Response Relationship, Drug; Drug Administration Schedule; Female; Glioblastoma; Humans; Magnetic Resonance Imaging; Male; Middle Aged; Niacinamide; Phenylurea Compounds; Recurrence; Sorafenib; Survival Analysis; Temozolomide; Time Factors | 2013 |
Phase I study of sorafenib combined with radiation therapy and temozolomide as first-line treatment of high-grade glioma.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Chemoradiotherapy; Dacarbazine; Disease-Free Survival; Female; Glioblastoma; Humans; Male; Maximum Tolerated Dose; Middle Aged; Niacinamide; Phenylurea Compounds; Sorafenib; Temozolomide; Treatment Outcome | 2014 |
Effect of CYP3A-inducing anti-epileptics on sorafenib exposure: results of a phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma.
Topics: Adult; Aged; Anticonvulsants; Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Brain Neoplasms; Cytochrome P-450 CYP3A; Dacarbazine; Disease-Free Survival; Female; Glioblastoma; Humans; Kaplan-Meier Estimate; Male; Middle Aged; Neoplasm Recurrence, Local; Niacinamide; Phenylurea Compounds; Pyridines; Recurrence; Sorafenib; Temozolomide | 2011 |
Concurrent radiotherapy and temozolomide followed by temozolomide and sorafenib in the first-line treatment of patients with glioblastoma multiforme.
Topics: Adult; Aged; Antineoplastic Agents, Alkylating; Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Brain Neoplasms; Combined Modality Therapy; Dacarbazine; Female; Glioblastoma; Humans; Male; Middle Aged; Niacinamide; Phenylurea Compounds; Pyridines; Sorafenib; Temozolomide | 2010 |
Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or gliosarcoma: North American Brain Tumor Consortium study 05-02.
Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Disease-Free Survival; Female; Glioblastoma; Humans; Male; Maximum Tolerated Dose; Middle Aged; Neoplasm Recurrence, Local; Niacinamide; Phenylurea Compounds; Sirolimus; Sorafenib; Young Adult | 2012 |
NABTT 0502: a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Disease Progression; Erlotinib Hydrochloride; Female; Follow-Up Studies; Glioblastoma; Humans; Male; Middle Aged; Neoplasm Recurrence, Local; Neoplasm Staging; Niacinamide; Phenylurea Compounds; Prognosis; Quinazolines; Sorafenib; Survival Rate; Tissue Distribution | 2013 |
16 other study(ies) available for sorafenib and Astrocytoma, Grade IV
Article | Year |
---|---|
Small, Smart, and LDLR-Specific Micelles Augment Sorafenib Therapy of Glioblastoma.
Topics: Blood-Brain Barrier; Brain Neoplasms; Cell Line, Tumor; Glioblastoma; Humans; Micelles; Sorafenib | 2021 |
Ca
Topics: Antineoplastic Agents; Apoptosis; Astrocytes; Cell Line, Tumor; Glioblastoma; Humans; Niacinamide; Phenylurea Compounds; Selenium; Sorafenib | 2023 |
Antiglioma Potential of Coumarins Combined with Sorafenib.
Topics: 4-Hydroxycoumarins; Antineoplastic Agents, Phytogenic; Apoptosis; Autophagy; Beclin-1; Caspase 3; Cell Line, Tumor; Cell Proliferation; Coumarins; Esculin; Gene Expression Regulation; Glioblastoma; Humans; Magnoliopsida; Necrosis; Phosphatidylinositol 3-Kinases; Plant Extracts; Proto-Oncogene Proteins c-bcl-2; raf Kinases; RNA, Small Interfering; Sorafenib; Umbelliferones | 2020 |
Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy: a good deal?
Topics: Administration, Intranasal; Animals; Antineoplastic Agents; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Survival; Glioblastoma; Humans; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Mice; Mice, Nude; Niacinamide; Phenylurea Compounds; Sorafenib; Treatment Outcome; Xenograft Model Antitumor Assays | 2017 |
ABCG2-mediated suppression of chlorin e6 accumulation and photodynamic therapy efficiency in glioblastoma cell lines can be reversed by KO143.
Topics: ATP Binding Cassette Transporter, Subfamily G, Member 2; Cell Line, Tumor; Cell Survival; Chlorophyllides; Diketopiperazines; Doxycycline; Gene Expression; Glioblastoma; Heterocyclic Compounds, 4 or More Rings; Humans; Light; Niacinamide; Phenylurea Compounds; Photosensitizing Agents; Porphyrins; Sorafenib | 2018 |
Development and characterization of sorafenib-loaded lipid nanocapsules for the treatment of glioblastoma.
Topics: Animals; Antineoplastic Agents; Brain Neoplasms; Cell Line, Tumor; Drug Compounding; Drug Delivery Systems; Glioblastoma; Humans; Lipids; Mice; Mice, Nude; Nanocapsules; Sorafenib | 2018 |
Functional Biological Activity of Sorafenib as a Tumor-Treating Field Sensitizer for Glioblastoma Therapy.
Topics: Animals; Antineoplastic Agents; Autophagy; Brain Neoplasms; Cell Cycle Checkpoints; Cell Line, Tumor; Combined Modality Therapy; Electric Stimulation Therapy; Glioblastoma; Humans; Mice; Mice, Inbred BALB C; Mice, Nude; Poly(ADP-ribose) Polymerases; Reactive Oxygen Species; Sorafenib | 2018 |
Quercetin and sorafenib as a novel and effective couple in programmed cell death induction in human gliomas.
Topics: Antineoplastic Agents; Apoptosis; Astrocytoma; Autophagy; Cell Line, Tumor; Drug Therapy, Combination; Glioblastoma; Glioma; Heat-Shock Proteins; HSP27 Heat-Shock Proteins; HSP72 Heat-Shock Proteins; Humans; Membrane Potential, Mitochondrial; Mitochondria; Molecular Chaperones; Necrosis; Niacinamide; Phenylurea Compounds; Quercetin; Sorafenib | 2014 |
Sorafenib and lithium chloride combination treatment shows promising synergistic effects in human glioblastoma multiforme cells in vitro but midkine is not implicated.
Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Line, Tumor; Cell Proliferation; Cytokines; ErbB Receptors; Glioblastoma; Humans; Lithium Chloride; Midkine; Niacinamide; Phenylurea Compounds; Sorafenib | 2014 |
Sorafenib/regorafenib and lapatinib interact to kill CNS tumor cells.
Topics: Anoikis; Antineoplastic Agents; Apoptosis Regulatory Proteins; Autophagy-Related Protein 5; bcl-X Protein; Beclin-1; Brain Neoplasms; CASP8 and FADD-Like Apoptosis Regulating Protein; Caspase 9; Cell Line, Tumor; Drug Synergism; ErbB Receptors; fas Receptor; Fas-Associated Death Domain Protein; Glioblastoma; Humans; Lapatinib; Lysosomal-Associated Membrane Protein 2; MAP Kinase Kinase 1; Membrane Proteins; Microtubule-Associated Proteins; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; PTEN Phosphohydrolase; Pyridines; Quinazolines; Sorafenib; TOR Serine-Threonine Kinases; Unfolded Protein Response | 2015 |
Inhibition of Autophagy by Chloroquine Enhances the Antitumor Efficacy of Sorafenib in Glioblastoma.
Topics: Animals; Apoptosis; Autophagy; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chloroquine; Glioblastoma; Male; Mice; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Signal Transduction; Sorafenib | 2016 |
Sorafenib inhibits cell growth but fails to enhance radio- and chemosensitivity of glioblastoma cell lines.
Topics: Antineoplastic Agents; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Survival; Dose-Response Relationship, Radiation; Drug Resistance, Neoplasm; Glioblastoma; Humans; MAP Kinase Signaling System; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Radiation Tolerance; Signal Transduction; Sorafenib; X-Rays | 2016 |
Sorafenib induces growth arrest and apoptosis of human glioblastoma cells through the dephosphorylation of signal transducers and activators of transcription 3.
Topics: Apoptosis; Benzenesulfonates; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cyclin D1; Cyclin E; DNA, Neoplasm; Glioblastoma; Humans; Interleukin-6; Janus Kinase 1; Janus Kinase 2; Mutant Proteins; Myeloid Cell Leukemia Sequence 1 Protein; Niacinamide; Oncogene Proteins; Phenylurea Compounds; Phosphorylation; Phosphotyrosine; Protein Binding; Protein Tyrosine Phosphatases; Proto-Oncogene Proteins c-bcl-2; Pyridines; Signal Transduction; Sorafenib; src-Family Kinases; STAT3 Transcription Factor; Tumor Cells, Cultured; Vanadates | 2010 |
Sorafenib plus valproic acid for infant spinal glioblastoma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Combined Modality Therapy; Extracellular Signal-Regulated MAP Kinases; Female; Glioblastoma; Humans; Immunohistochemistry; Infant; MAP Kinase Kinase Kinases; Neoplasm Recurrence, Local; Niacinamide; Phenylurea Compounds; Pyridines; Radiotherapy; raf Kinases; Sorafenib; Spinal Cord Neoplasms; Valproic Acid | 2010 |
Sorafenib exerts anti-glioma activity in vitro and in vivo.
Topics: Animals; Antineoplastic Agents; Apoptosis; Autophagy; Benzenesulfonates; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Glioblastoma; Glioma; Mice; Mice, Nude; Neoplasm Transplantation; Neovascularization, Pathologic; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Random Allocation; Sorafenib; Treatment Outcome | 2010 |
Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures.
Topics: Apoptosis; Basic Helix-Loop-Helix Transcription Factors; Brain Neoplasms; Cell Differentiation; Cell Proliferation; Down-Regulation; Glioblastoma; Humans; Intermediate Filament Proteins; Mitogen-Activated Protein Kinases; Myeloid Cell Leukemia Sequence 1 Protein; Neoplastic Stem Cells; Nerve Tissue Proteins; Nestin; Niacinamide; Oligodendrocyte Transcription Factor 2; Phenylurea Compounds; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Sorafenib; SOXB1 Transcription Factors; STAT3 Transcription Factor; Tumor Cells, Cultured | 2013 |