solochrome-cyanine-r and Disease-Models--Animal

solochrome-cyanine-r has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for solochrome-cyanine-r and Disease-Models--Animal

ArticleYear
Combinatorial treatment of acute spinal cord injury with ghrelin, ibuprofen, C16, and ketogenic diet does not result in improved histologic or functional outcome.
    Journal of neuroscience research, 2014, Volume: 92, Issue:7

    Because of the complex, multifaceted nature of spinal cord injury (SCI), it is widely believed that a combination of approaches will be superior to individual treatments. Therefore, we employed a rat model of cervical SCI to evaluate the combination of four noninvasive treatments that individually have been reported to be effective for acute SCI during clinically relevant therapeutic time windows. These treatments included ghrelin, ibuprofen, C16, and ketogenic diet (KD). These were selected not only because of their previously reported efficacy in SCI models but also for their potentially different mechanisms of action. The administration of ghrelin, ibuprofen, C16, and KD several hours to days postinjury was based on previous observations by others that each treatment had profound effects on the pathophysiology and functional outcome following SCI. Here we showed that, with the exception of a modest improvement in performance on the Montoya staircase test at 8-10 weeks postinjury, the combinatorial treatment with ghrelin, ibuprofen, C16, and KD did not result in any significant improvements in the rearing test, grooming test, or horizontal ladder. Histologic analysis of the spinal cords did not reveal any significant differences in tissue sparing between treatment and control groups. Although single approaches of ghrelin, ibuprofen, C16, and KD have been reported to be beneficial after SCI, our results show that the combination of the four interventions did not confer significant functional or histological improvements in a cervical model of SCI. Possible interactions among the treatments may have negated their beneficial effects, emphasizing the challenges that have to be addressed when considering combinatorial drug therapies for SCI.

    Topics: Animals; Benzenesulfonates; Biomechanical Phenomena; Complement C6; Diet, Ketogenic; Disease Models, Animal; Drug Therapy, Combination; Ghrelin; Ibuprofen; Male; Motor Activity; Psychomotor Performance; Rats; Rats, Sprague-Dawley; Recovery of Function; Spinal Cord Injuries; Statistics, Nonparametric

2014
Lack of robust neurologic benefits with simvastatin or atorvastatin treatment after acute thoracic spinal cord contusion injury.
    Experimental neurology, 2010, Volume: 221, Issue:2

    Although much progress has been made in the clinical care of patients with acute spinal cord injuries, there are no reliably effective treatments, which minimize secondary damage and improve neurologic outcome. The time and expense needed to establish de novo pharmacologic or biologic therapies for acute SCI has encouraged the development of neuroprotective treatments based on drugs that are already in clinical use and, therefore, have the advantage of a well-characterized safety and pharmacokinetic profile in humans. Statins are the most commonly prescribed class of lipid-lowering drugs, and recently, it has been recognized that statins also have powerful immunomodulatory and anti-inflammatory effects. This paper describes a series of experiments that were performed to evaluate the comparative neuroprotective effects of simvastatin and atorvastatin. We observed a promising signal of neurologic benefit with simvastatin in our first experiment, but in repeated attempts to replicate that effect in three subsequent experiments, we failed to reveal any behavioral or histologic improvements. We would conclude that simvastatin given orally or subcutaneously at doses previously reported by other investigators to be effective in different neurologic conditions does not confer a significant neurologic benefit in a thoracic contusion injury model (OSU Impactor) when administered with a 1-h delay in intervention. We contend that further preclinical investigation of atorvastatin and simvastatin is warranted before considering their translation into human SCI.

    Topics: Analysis of Variance; Animals; Atorvastatin; Benzenesulfonates; Dietary Sucrose; Disease Models, Animal; Drug Administration Routes; Ectodysplasins; Exploratory Behavior; Food, Formulated; Heptanoic Acids; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Male; Motor Activity; Nervous System Diseases; Pain Measurement; Pain Threshold; Psychomotor Performance; Pyrroles; Rats; Rats, Sprague-Dawley; Sacrococcygeal Region; Simvastatin; Spinal Cord Injuries

2010