sodium sulfate has been researched along with Colitis in 83 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (1.20) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (1.20) | 29.6817 |
2010's | 18 (21.69) | 24.3611 |
2020's | 63 (75.90) | 2.80 |
Authors | Studies |
---|---|
Chen, JY; Jiang, MY; Li, T; Li, Y; Wei, W; Xu, ZW; Zhang, JW; Zhang, LL | 1 |
Battista, N; Cappariello, A; Corsetti, A; Latella G, G; Pompili, S; Prete, R; Selvaggini, R; Sferra, R; Taticchi, A; Vetuschi, A | 1 |
Gu, J; Hu, Y; Ji, X; Lv, H; Wang, J; Wang, S; Zhang, B; Zhang, X; Zhao, C | 1 |
Cao, L; He, S; Li, N; Qing, D; Si, J; Sun, Y; Wang, J; Xu, X; Zhang, J | 1 |
Dong, S; Jing, W; Liu, W; Wang, F; Wang, K; Wang, S; Xu, Y; Yang, J; Zhao, X; Zhu, M | 1 |
Miao, F | 1 |
Chen, YR; Hong, Y; Hou, LD; Huang, ZH; Shen, B; Xin, Y; Zhao, J | 1 |
Kim, HW; Kim, JS; Lee, BS; Lee, JW; Lee, SK; Lee, YI; Park, HW; Whang, J; Yoon, HS; Yu, AR | 1 |
Gu, EL; Guo, WZ; Hu, X; Li, XK; Ma, K; Que, W; Ueda, D; Zhong, L | 1 |
Chen, W; Chen, X; Li, C; Wang, M | 1 |
Chen, K; Dong, Q; Gao, C; Lu, F; Man, S; Tang, M; Wang, H; Wang, N | 1 |
Biswal, L; Choudhury, SR; Dev, A; Karmakar, S; Kushwaha, AC; Mohanbhai, SJ; Sardoiwala, MN; Sharma, SS | 1 |
Raj, A; Reethi, B; Shyamprasad, K; Sudeep, HV; Venkatakrishna, K | 1 |
Hao, Y; Liu, J; Mai, P; Wang, J; Wang, Z | 1 |
Chen, S; He, X; Huang, Y; Liu, S; Ouyang, D; Qiu, J; Shi, F; Xu, L; Xu, R; Zeng, B; Zha, Q | 1 |
Chen, L; He, J; Meng, W; Ouyang, K; Wang, W; Zhang, Y | 1 |
Cui, DJ; Yan, F; Yang, LC; Yuan, WQ; Zhao, X | 1 |
Chai, Y; Guo, W; Li, S; Song, Y; Wu, H; Yuan, N; Zeng, M; Zhao, Y | 1 |
Chen, IY; Hu, ML; Huang, WT; Lian, WS; Wang, FS; Yang, CH; Yang, JW; Yang, MY | 1 |
Bae, JH; Baek, MC; Cho, YE; Choi, SH; Eom, JY; Hwang, JH; Kim, DH; Kim, DK; Kim, HJ; Kwon, GS; Lee, DH | 1 |
Abdel-Nasser, ZM; Abdeldaiem, MSI; Abdelhady, R; Alhajlah, S; AlOmeir, O; Alrouji, M; El Adle Khalaf, N; El-Bahouty, WB; El-Gharbawy, DM; Elrabat, A; Ewees, MGE; Ghaffar, DMA; Haleem, AA; Kaddah, MMY; Mohammed, OA; Saber, S; Shata, A; Zakaria, S; Zohny, MH | 1 |
Koh, SD; Moon, SB; Perrino, BA; Sanders, KM; Sung, TS | 1 |
Casciati, A; Colantoni, E; Diretto, G; Frusciante, S; Giovannini, D; Lorenzo Rebenaque, L; Mancuso, M; Marco-Jiménez, F; Pazzaglia, S; Prioreschi, C; Vitali, R | 1 |
Deng, Y; Fei, S; Feng, S; Li, L; Mo, Y; Song, J; Wang, K; Wu, J; Xu, Z; Zhang, Q; Zhang, Z; Zhou, R | 1 |
de Vallière, C; Foti, F; Hausmann, M; Heuchel, R; Mamie, C; Perren, L; Rogler, G; Ruiz, PA; Schuler, C; Stokmaier, M; Weder, B | 1 |
Cha, YS; Kim, KA; Thomas, SS | 1 |
Higashiyama, M; Hokari, R; Horiuchi, K; Itoh, S; Kurihara, C; Miura, S; Mizoguchi, A; Narimatsu, K; Nishii, S; Nishimura, H; Okada, Y; Sugihara, N; Tanemoto, R; Tomioka, A; Tomita, K; Tsuzuki, Y | 1 |
Ando, Y; Aoi, M; Fukui, T; Horitani, S; Matsumoto, Y; Naganuma, M; Okazaki, K; Tanaka, H; Tomiyama, T; Tsuneyama, K; Uragami, T | 1 |
A Katouah, H; Acker, M; Al Hadi, R; Ali, M; Alserihi, R; Alyami, J; Alzahrani, E; Amirazodi, M; Amrillah, T; Andreassen, OA; Ardiccioni, C; Ask, H; Atzori, C; Ayorech, Z; Azambuja, JH; Azmi, R; Badem, S; Balci, AB; Bali, H; Baranova, NS; Barantsevich, ER; Barocci, S; Bauer, RJ; Bauermeister, JA; Bazhenova, TA; Biagetti, G; Bigdeli, F; Bonar, EE; Bouloumis, T; Bu, Y; Cai, Z; Cakiroglu, B; Canetto, SS; Cao, J; Caucci, S; Cerbo, I; Chen, C; Chen, J; Chen, Q; Chen, Y; Cheng, B; Cheng, X; Chinappi, M; Choya, A; Cicconardi, F; Cipolletta, S; Colasurdo, G; Costabile, BK; Coughlin, LN; Crippa, P; D'Agostino, M; D'Annessa, I; Daryanoosh, F; Das, R; Davey Smith, G; Davidson, BR; Davies, NM; Davis, TME; Davis, WA; de Rivas, B; Demir, D; Deng, Z; Dhanya, TM; Di Marino, D; Divya, KM; Dong, N; Drinkwater, JJ; Ekholuenetale, M; El-Bindary, AA; El-Bindary, MA; El-Desouky, MG; Elsayed, H; Ema, K; Endraswari, PD; Entilli, L; Ettl, T; Eyado, A; Fan, X; Fang, W; Farina, M; Florimbio, AR; Fowobaje, KR; Gaeini, A; Gao, XM; Gao, Y; Ghaemi, R; Ghelardi, E; Gilmutdinov, IF; Gochicoa-Rangel, L; Goncu, MT; Gözüküçük, R; Grammatikopoulos, P; Gu, Y; Guan, ZJ; Gucu, A; Guldberg, R; Gungor, O; Guo, W; Gutiérrez-Ortiz, JI; Guzmán-Boulloud, N; Guzmán-Valderrábano, C; Głuszko, A; Hama, A; Hamada, M; Han, J; Hashimoto, T; Havdahl, A; Hayashita, T; He, X; Helgeland, Ø; Hinck, AP; Hinck, CS; Holtzapple, M; Hou, Y; Howe, LD; Hu, B; Hu, H; Huang, L; Huang, Z; Hughes, AM; Hussain, G; Ibidoja, OJ; Ichikawa, D; Imber, C; Islam, MR; Iype, S; Jaber, J; Jacobs, R; Jafry, AT; Ji, L; Ji, X; Jiang, L; Jiang, Y; Jie, HFM; Jie, HM; Johansen, MP; Johansson, S; Juan, LX; Juan, W; Kahraman, N; Kallinger, I; Kang, H; Karakulova, YV; Kärmer, T; Kataoka, S; Kato, K; Kawashima, N; Kazim, AH; Khalil, MR; Kitazawa, H; Klimesova, YM; Kojima, S; Kose, M; Kostakis, ID; Koushkie Jahromi, M; Krishna, GA; Krizova, D; La Teana, A; Lan, K; Li, J; Li, JZ; Li, M; Li, R; Li, S; Li, Y; Li, Z; Liu, H; Liu, J; Liu, KG; Liu, L; Liu, Q; Liu, T; Liu, X; Lomachenko, KA; López-Fonseca, R; Ludwig, N; Luo, A; Luo, L; Luo, Y; Lupetti, A; M El-Metwaly, N; Ma, K; Maemura, R; Magnus, P; Manakin, YV; Mancia, F; Mashood, LO; Matsumoto, K; Mehrabi, A; Meier, JK; Mekonnen, Y; Mencarelli, D; Menzo, S; Mikagi, A; Mironov, VS; Misawa-Suzuki, T; Miwata, S; Mizuta, Y; Mohanan, PV; Mondal, J; Morici, P; Morita, K; Morozzo Della Rocca, B; Morris, T; Morsali, A; Morzhukhina, MV; Motta, S; Muramatsu, H; Naidu, R; Narita, A; Narita, K; Nasralla, D; Nemcokova, M; Netukova, M; Nishikawa, E; Nishio, N; Niu, X; Niu, Y; Njølstad, P; Notarstefano, V; Nugroho, MA; Nørgård, BM; Okuno, Y; Olokede, O; Ong, SP; Osailan, A; Ouyang, Z; Ozyazicioglu, AF; Pan, F; Parui, A; Paul, R; Pavoni, E; Payne, TE; Peng, X; Pérez-Padilla, R; Perta, N; Peter, SC; Pierantoni, L; Pietrowska, M; Pissanou, T; Pollok, JM; Prasetio, A; Putra, FS; Qiang, C; Qiao, L; Qutob, HMH; Raptis, DA; Razzo, BM; Reichborn-Kjennerud, T; Reichert, TE; Remigio-Luna, A; Rexha, J; Rivani, E; Rizzato, C; Romagnoli, A; Rossolini, GM; Sa, LY; Saad, RA; Sakaguchi, H; Salesi, M; Salsabilla, Z; Sanderson, E; Sanderson, P; Savitha, DP; Schulz, D; Seker, IB; Selvaganapathy, PR; Sha, D; Shah, SF; Shaikhomar, OA; Sharma, D; Shi, C; Shi, P; Shrotri, A; Sidiq, DH; Simonov, SV; Singh, AK; Song, C; Song, T; Spanier, G; Spoerl, S; Staropoli, A; Statsenko, ME; Steinhauer, S; Stosic, A; Studeny, P; Sugaya, T; Sun, S; Sun, X; Sunbul, SA; Supandi, AR; Suzuki, K; Suzuki, Y; Szczepański, MJ; Takahashi, Y; Taniguchi, R; Tao, Y; Tesli, M; Thirión-Romero, I; Tong, D; Trucchi, E; Tsuchido, Y; Turchetti, C; Turkina, SV; Turner, AW; Uldbjerg, N; Vinale, F; Wakamatsu, M; Walton, MA; Wang, C; Wang, Q; Wang, W; Wang, Y; Wang, Z; Wehberg, S; Wei, ZL; Wen, B; Whiteside, TL; Whittingham, MS; Widodo, ADW; Widłak, P; Wright, AI; Wu, H; Wu, Y; Wu, YL; Xiang, LG; Xiao, G; Xie, B; Xie, L; Xin, H; Xiong, J; Xiong, X; Xu, C; Xu, S; Yagubskii, EB; Yakushev, IA; Yang, H; Yang, J; Yao, J; Yao, ZX; Ye, J; Yerneni, SS; Yirgu, A; Yoshida, N; Yoshida, T; Young, SD; Yu, DN; Yuksel, A; Zac, J; Zac, S; Zarifkar, AH; Zhai, Y; Zhang, F; Zhang, H; Zhang, JW; Zhang, L; Zhang, Q; Zhang, X; Zhang, Y; Zhao, D; Zhao, J; Zhao, M; Zheng, D; Zheng, J; Zhou, G; Zhou, H; Zhu, P; Zhu, T; Zhu, Y; Zimmerman, MA; Zou, X | 1 |
Chen, C; Chen, S; Cui, SW; Dong, N; Fang, Q; Nie, S; Wang, J; Zhang, Y | 1 |
Chen, M; Chen, Y; Du, F; Du, Y; Gu, L; Li, M; Li, W; Li, X; Liu, Q; Luo, H; Shen, J; Sun, Y; Wang, F; Wang, Q; Wang, S; Wu, X; Xiao, Z; Yang, Y; Zeng, J; Zhao, Q; Zhao, Y | 1 |
Chen, X; Lu, Y; Lu, Z; Meng, F; Zhao, H | 1 |
Bhadada, SK; Bhatia, R; Bishnoi, M; Devi, K; Kondepudi, KK; Rawat, A; Sharma, S; Sharma, SS; Singh, S | 1 |
Fujino, Y; Ido, A; Kanmura, S; Kojima, I; Kumagai, K; Maeda, H; Maeda, N; Morinaga, Y; Sasaki, F; Tanaka, A; Tanoue, S | 1 |
Jeon, SM; Kim, HH; Kim, K; Kim, KY; Kim, YJ; Shin, CS; Song, YH; Yoon, JW | 1 |
Chen, H; Huang, J; Lai, C; Sun, R; Yao, S; Yu, Z | 1 |
Beyaz, S; Burr, AHP; Chiaranunt, P; Cooper, VS; Cumberland, R; Delgoffe, GM; Eskiocak, O; Hand, TW; Ji, J; Marshall, CW; Menk, AV; Mentrup, HL; Mollen, KP; Mullinax, L; Overacre-Delgoffe, A; Ozler, K; Poholek, AC; Rittenhouse, N; Yueh, B; Zhang, X | 1 |
Jung, BG; Lee, BJ; Lee, JA; Park, BM | 1 |
Dong, Y; Guo, X; Jin, T; Li, X; Liu, L; Xie, W; Xu, D | 1 |
Abd El-Hamid, NR; Abdelmaogood, AKK; Alharbi, HM; Alshawwa, SZ; Elkholy, SE; Elsayed, HA; Hassan, WA; Hussein, SM; Imbaby, S; Jaremko, M; Maher, SA | 1 |
Dilger, RN; Donovan, SM; Lee, Y; Sommer, KM | 1 |
Duan, X; Guan, G; Liu, M; Lu, X; Wang, Y; Zhu, Y | 1 |
Chang, J; Dou, X; Qiao, L; Song, X; Xu, C; Zeng, X; Zhu, L | 1 |
Heydeck, D; Kuhn, H; Labuz, D; Machelska, H; Püschel, GP; Reisch, F; Rothe, M; Schäfer, M; Stehling, S | 1 |
Heydeck, D; Kakularam, KR; Kuhn, H; Labuz, D; Machelska, H; Rohwer, N; Weylandt, K | 1 |
Gao, Q; Hu, B; Hu, H; Liu, H; Tian, W; Yang, H; Yao, X; Zheng, J | 1 |
Chang, H; Chopra, S; Cox, AD; Kennett, M; Li, S; Reddivari, L; Rosa, C; Wu, B | 1 |
Shirakawa, H; Wee, VTK; Yeh, CL; Yeh, SL | 1 |
Fu, Z; Guo, X; Hong, H; Luo, Y; Tan, Y; Yao, L; Zou, W | 1 |
Cai, X; Goulette, T; Gu, M; Han, Y; Li, F; Li, Z; Song, M; Wu, X; Xiao, H | 1 |
Du, P; Hou, JC; Li, AL; Li, Y; Ni, WW; Wu, HY; Zhang, QM; Zhang, X; Zhang, Y | 1 |
Jung, YS; Kim, KS; Kim, S; Kim, SH; Kwon, D; Lee, S; Lee, W; Lee, YH; Seo, MS; Son, SW | 1 |
Chen, W; Chen, Y; Deng, J; Liang, L; Liu, L; Tan, J; Wang, M; Xue, M; Zeng, L | 1 |
Alberto, JM; Bressenot, AM; Bronowicki, JP; Christov, C; de Barros, JP; Deckert, V; Guéant, JL; Guéant-Rodriguez, RM; Harb, Z; Lagrost, L; Peyrin-Biroulet, L; Raso, J; Umoret, R | 1 |
Du, P; Huo, G; Li, B; Li, C; Li, H; Liu, F; Shi, J; Smith, EE; Wang, N; Xie, Q | 1 |
Da, B; Guo, Z; Li, Q; Wang, C; Zhang, J; Zhu, W | 1 |
Basu, S; Dannenberg, AJ; Ito, N; Makino, T; Montrose, DC | 1 |
Honjo, T; Itoh, T; Kanada, M; Toyota, K | 1 |
Chen, Q; Evivie, SE; Huo, G; Li, B; Shi, J; Xie, Q; Yue, Y; Zhao, L | 1 |
Fan, Y; Huang, MQ; Jia, XK; Lan, ML; Li, XY; Wu, SS; Xu, SH; Xu, W; Zhu, HC | 1 |
Chachar, B; Gao, Y; Hou, J; Hu, M; Li, M; Li, X; Xu, Q; Zhang, X | 1 |
Chen, J; Gu, WC; Han, T; Huang, HL; Li, L; Liu, XJ; Zhang, LK; Zhang, XS | 1 |
He, N; Jung, S; Lee, MS; Li, S; Liu, N; Wang, Y; Zhou, Z | 1 |
Kim, DG; Lee, MR; Ma, JY; Park, KI; Yoo, JM | 1 |
Cui, SX; Qu, XJ; Wang, F; Zhang, YS | 1 |
Nakase, H | 1 |
Cho, ML; Choi, J; Hwang, SH; Kim, EK; Kim, JK; Lee, BI; Lee, SY; Park, JS; Park, SH | 1 |
Cook, MD; Martin, SA; Pence, BD; Wallig, MA; Whitlock, K; Williams, C; Woods, JA | 1 |
Chen, YH; Hua, X; Liu, S; Lou, Y; Morrissey, S; Porturas, T; Sun, H | 1 |
Kobayashi, Y; Kovacs-Nolan, J; Matsui, T; Mine, Y; Rupa, P; Turner, PV | 1 |
Matsui, H; Nagasaki, Y; Vong, LB; Yoshitomi, T | 1 |
Fukuda, T; Majumder, K; Matsui, T; Mine, Y; Turner, PV; Zhang, H | 1 |
Lepp, D; Liu, R; Lu, JT; Monk, JM; Power, KA; Robinson, LE; Tsao, R; Wolyn, DJ; Wood, GA; Wu, W; Zhang, C | 1 |
Chadee, K; Cobo, ER; Holani, R; Kissoon-Singh, V; Moreau, F | 1 |
Fukuda, T; Majumder, K; Matsui, T; Mine, Y; Mitsuzumi, H; Sakurai, T; Taniguchi, Y; Watanabe, H; Zhang, H | 1 |
Archbold, T; Fan, MZ; Kim, CJ; Kovacs-Nolan, JA; Mine, Y; Yang, C | 1 |
Handa, O; Hirata, I; Ichikawa, H; Mizushima, K; Naito, Y; Omatsu, T; Suzuki, T; Takagi, T; Ueda, H; Yoshikawa, T | 1 |
Choi, KS; Chung, MH; Hahm, KB; Han, YM; Hong, H; Hong, KS; Kim, EH; Ock, CY | 1 |
Asano, M; Iwakura, Y; Koseki, K; Miyagi, T; Moriya, S; Sato, I; Shiozaki, K; Tateno, H; Wada, T; Yamaguchi, K | 1 |
Guan, X; Guan, Y; Li, D; Li, L; Liu, M; Liu, S; Lu, X; Pan, H; Qian, Y; Wei, G; Zhang, L; Zhao, Y | 1 |
PRUDDEN, JF | 1 |
Dieleman, LA; Langenbach, R; Morham, SG; Morteau, O; Sartor, RB; Sellon, R; Smithies, O | 1 |
2 review(s) available for sodium sulfate and Colitis
Article | Year |
---|---|
Antioxidant and anti-inflammatory protective effects of yellowtail (
Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Arginine; Caco-2 Cells; Claudin-4; Colitis; Cyclooxygenase 2; Dextran Sulfate; Humans; Hydrogen Peroxide; Interleukin-1beta; Interleukin-8; Lipopolysaccharides; Mesalamine; Mice; Mice, Inbred C57BL; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Nucleic Acids; Occludin; Peroxidase; Reactive Oxygen Species; Sulfates; Tumor Necrosis Factor-alpha | 2022 |
Impact of dexamethasone and tocilizumab on hematological parameters in COVID-19 patients with chronic disease.
Topics: Acetaminophen; Acetylcarnitine; Acetylcholinesterase; Acids; Acinetobacter baumannii; Acinetobacter Infections; Adaptation, Psychological; Adolescent; Adsorption; Adult; Aged; Alcohol Drinking; Alzheimer Disease; Amikacin; Ammonia; Anaerobiosis; Animals; Anorexia; Anti-Bacterial Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Anxiety; Aptamers, Nucleotide; Asthenia; Attention Deficit Disorder with Hyperactivity; Bacterial Proteins; Beryllium; beta-Lactamases; Biofuels; Biomass; Biosensing Techniques; Bismuth; Blister; Body Mass Index; Body Surface Area; Boronic Acids; Brain; Breast Neoplasms; Butyrylcholinesterase; Cannabis; Carbapenems; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Carboxylic Acids; Carcinoma, Hepatocellular; Cardiovascular Diseases; Carnitine; Case-Control Studies; Catalysis; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Child; China; Cholinesterase Inhibitors; Clarithromycin; Clostridioides; Clostridioides difficile; Clostridium Infections; Cohort Studies; Colistin; Colitis; Colon; Coloring Agents; Coronary Artery Bypass; Creatinine; Crystalloid Solutions; Cytokines; Depression; Dextran Sulfate; Dextrans; Diabetes Mellitus, Type 2; Diabetic Retinopathy; Diarrhea; Dietary Supplements; Diphenhydramine; Disease Models, Animal; Disease Outbreaks; Double-Blind Method; Doxorubicin; Drosophila; Drug Tapering; Dysbiosis; Electrons; Escherichia coli; Extracellular Vesicles; Fatigue; Female; Fermentation; gamma-Cyclodextrins; Gastrointestinal Microbiome; Glucose; Graft Survival; Graft vs Host Disease; Head and Neck Neoplasms; Heart Arrest, Induced; Hematopoietic Stem Cell Transplantation; High-Intensity Interval Training; Hippocampus; Humans; Hydrogen-Ion Concentration; Hypertension; Incidence; Interferon-gamma; Italy; Kinetics; Klebsiella Infections; Klebsiella pneumoniae; Lab-On-A-Chip Devices; Lactoferrin; Larva; Length of Stay; Lignin; Liver; Liver Neoplasms; Liver Transplantation; Living Donors; Low Back Pain; Lung; Lung Volume Measurements; Macrophages; Male; Melphalan; Men; Mendelian Randomization Analysis; Meropenem; Methane; Mice; Mice, Inbred C57BL; Microbial Sensitivity Tests; Mitochondrial Proteins; Molecular Docking Simulation; Molecular Structure; Mothers; Motivation; Mycoplasma; Mycoplasma hominis; Mycoplasma Infections; NAD; Nanocomposites; Nanoparticles; Nanotubes, Carbon; Naproxen; Neovascularization, Pathologic; Neurons; Nitrates; Nucleolin; Opuntia; Paratyphoid Fever; Phenotype; Phosphatidylinositol 3-Kinases; Phytochemicals; Plant Extracts; Pregnancy; Prevalence; Prospective Studies; Proto-Oncogene Proteins c-akt; Pulmonary Disease, Chronic Obstructive; Rats; Rats, Wistar; Resveratrol; Retrospective Studies; Rifampin; Risk Factors; RNA, Messenger; Selenium; Sleep; Social Behavior; Soil; Soil Pollutants; Squamous Cell Carcinoma of Head and Neck; Staphylococcus aureus; Structure-Activity Relationship; Suicidal Ideation; Suicide; Superoxide Dismutase-1; Surveys and Questionnaires; Swimming; Syndrome; Tannins; Temperature; Transforming Growth Factor beta; Transplantation Conditioning; Treatment Outcome; Triple Negative Breast Neoplasms; Troponin T; Tumor Microenvironment; United Kingdom; Ureaplasma; Ureaplasma urealyticum; Urinary Tract Infections; Viscum; Waste Disposal Facilities; Wastewater; Water; Water Pollutants, Chemical; Wolfiporia; Young Adult | 2022 |
1 trial(s) available for sodium sulfate and Colitis
Article | Year |
---|---|
Impact of dexamethasone and tocilizumab on hematological parameters in COVID-19 patients with chronic disease.
Topics: Acetaminophen; Acetylcarnitine; Acetylcholinesterase; Acids; Acinetobacter baumannii; Acinetobacter Infections; Adaptation, Psychological; Adolescent; Adsorption; Adult; Aged; Alcohol Drinking; Alzheimer Disease; Amikacin; Ammonia; Anaerobiosis; Animals; Anorexia; Anti-Bacterial Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Anxiety; Aptamers, Nucleotide; Asthenia; Attention Deficit Disorder with Hyperactivity; Bacterial Proteins; Beryllium; beta-Lactamases; Biofuels; Biomass; Biosensing Techniques; Bismuth; Blister; Body Mass Index; Body Surface Area; Boronic Acids; Brain; Breast Neoplasms; Butyrylcholinesterase; Cannabis; Carbapenems; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Carboxylic Acids; Carcinoma, Hepatocellular; Cardiovascular Diseases; Carnitine; Case-Control Studies; Catalysis; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Child; China; Cholinesterase Inhibitors; Clarithromycin; Clostridioides; Clostridioides difficile; Clostridium Infections; Cohort Studies; Colistin; Colitis; Colon; Coloring Agents; Coronary Artery Bypass; Creatinine; Crystalloid Solutions; Cytokines; Depression; Dextran Sulfate; Dextrans; Diabetes Mellitus, Type 2; Diabetic Retinopathy; Diarrhea; Dietary Supplements; Diphenhydramine; Disease Models, Animal; Disease Outbreaks; Double-Blind Method; Doxorubicin; Drosophila; Drug Tapering; Dysbiosis; Electrons; Escherichia coli; Extracellular Vesicles; Fatigue; Female; Fermentation; gamma-Cyclodextrins; Gastrointestinal Microbiome; Glucose; Graft Survival; Graft vs Host Disease; Head and Neck Neoplasms; Heart Arrest, Induced; Hematopoietic Stem Cell Transplantation; High-Intensity Interval Training; Hippocampus; Humans; Hydrogen-Ion Concentration; Hypertension; Incidence; Interferon-gamma; Italy; Kinetics; Klebsiella Infections; Klebsiella pneumoniae; Lab-On-A-Chip Devices; Lactoferrin; Larva; Length of Stay; Lignin; Liver; Liver Neoplasms; Liver Transplantation; Living Donors; Low Back Pain; Lung; Lung Volume Measurements; Macrophages; Male; Melphalan; Men; Mendelian Randomization Analysis; Meropenem; Methane; Mice; Mice, Inbred C57BL; Microbial Sensitivity Tests; Mitochondrial Proteins; Molecular Docking Simulation; Molecular Structure; Mothers; Motivation; Mycoplasma; Mycoplasma hominis; Mycoplasma Infections; NAD; Nanocomposites; Nanoparticles; Nanotubes, Carbon; Naproxen; Neovascularization, Pathologic; Neurons; Nitrates; Nucleolin; Opuntia; Paratyphoid Fever; Phenotype; Phosphatidylinositol 3-Kinases; Phytochemicals; Plant Extracts; Pregnancy; Prevalence; Prospective Studies; Proto-Oncogene Proteins c-akt; Pulmonary Disease, Chronic Obstructive; Rats; Rats, Wistar; Resveratrol; Retrospective Studies; Rifampin; Risk Factors; RNA, Messenger; Selenium; Sleep; Social Behavior; Soil; Soil Pollutants; Squamous Cell Carcinoma of Head and Neck; Staphylococcus aureus; Structure-Activity Relationship; Suicidal Ideation; Suicide; Superoxide Dismutase-1; Surveys and Questionnaires; Swimming; Syndrome; Tannins; Temperature; Transforming Growth Factor beta; Transplantation Conditioning; Treatment Outcome; Triple Negative Breast Neoplasms; Troponin T; Tumor Microenvironment; United Kingdom; Ureaplasma; Ureaplasma urealyticum; Urinary Tract Infections; Viscum; Waste Disposal Facilities; Wastewater; Water; Water Pollutants, Chemical; Wolfiporia; Young Adult | 2022 |
81 other study(ies) available for sodium sulfate and Colitis
Article | Year |
---|---|
CP-25 exerts therapeutic effects in mice with dextran sodium sulfate-induced colitis by inhibiting GRK2 translocation to downregulate the TLR4-NF-κB-NLRP3 inflammasome signaling pathway in macrophages.
Topics: Animals; Colitis; Dextran Sulfate; Disease Models, Animal; Humans; Inflammasomes; Macrophages; Mice; Mice, Inbred C57BL; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Signal Transduction; Sulfates; Toll-Like Receptor 4 | 2021 |
The antiinflammatory and antifibrotic effect of olive phenols and Lactiplantibacillus plantarum IMC513 in dextran sodium sulfate-induced chronic colitis.
Topics: Animals; Colitis; Colon; Cytokines; Dextran Sulfate; Disease Models, Animal; Mice; Mice, Inbred C57BL; Olea; Phenols; Probiotics; Sulfates | 2022 |
Sweeteners Maintain Epithelial Barrier Function Through the miR-15b/RECK/MMP-9 Axis, Remodel Microbial Homeostasis, and Attenuate Dextran Sodium Sulfate-Induced Colitis in Mice.
Topics: Animals; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Homeostasis; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; MicroRNAs; Sulfates; Sweetening Agents | 2022 |
Licoflavone B, an isoprene flavonoid derived from licorice residue, relieves dextran sodium sulfate-induced ulcerative colitis by rebuilding the gut barrier and regulating intestinal microflora.
Topics: Animals; Butadienes; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Flavones; Flavonoids; Gastrointestinal Microbiome; Glycyrrhiza; Hemiterpenes; Intestinal Mucosa; Mice; Mice, Inbred C57BL; Sulfates | 2022 |
Hyaluronic Acid-Melatonin Nanoparticles Improve the Dysregulated Intestinal Barrier, Microbiome and Immune Response in Mice with Dextran Sodium Sulfate-Induced Colitis.
Topics: Animals; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Gastrointestinal Microbiome; Hyaluronic Acid; Immunity; Intestinal Mucosa; Melatonin; Mice; Mice, Inbred C57BL; Nanoparticles; Sulfates | 2022 |
Hydroxytyrosol alleviates dextran sodium sulfate-induced colitis by inhibiting NLRP3 inflammasome activation and modulating gut microbiota in vivo.
Topics: Animals; Antioxidants; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Gastrointestinal Microbiome; Inflammasomes; Inflammatory Bowel Diseases; Mice; Mice, Inbred C57BL; NLR Family, Pyrin Domain-Containing 3 Protein; Phenylethyl Alcohol; Sulfates | 2022 |
Spinal anesthesia alleviates dextran sodium sulfate-induced colitis by modulating the gut microbiota.
Topics: Anesthesia, Spinal; Anesthetics; Animals; Bacteroidetes; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Gastrointestinal Microbiome; Inflammatory Bowel Diseases; Mice; Mice, Inbred C57BL; Sulfates | 2022 |
Aconitate Decarboxylase 1 Deficiency Exacerbates Mouse Colitis Induced by Dextran Sodium Sulfate.
Topics: Animals; Carboxy-Lyases; Chemokines; Colitis; Colitis, Ulcerative; Colon; Cytokines; Dextran Sulfate; Disease Models, Animal; Humans; Inflammatory Bowel Diseases; Mammals; Mice; Mice, Inbred C57BL; Sulfates | 2022 |
Combinations of anti-GITR antibody and CD28 superagonist ameliorated dextran sodium sulfate-induced mouse colitis.
Topics: Animals; CD28 Antigens; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Forkhead Transcription Factors; Mice; Mice, Inbred C57BL; RNA, Messenger; Sulfates; T-Lymphocytes, Regulatory | 2022 |
Taraxasterol ameliorates dextran sodium sulfate-induced murine colitis via improving intestinal barrier and modulating gut microbiota dysbiosis.
Topics: Animals; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; DNA, Ribosomal; Dysbiosis; Gastrointestinal Microbiome; Mice; Mice, Inbred C57BL; Sterols; Sulfates; Triterpenes | 2022 |
Dietary soybeans worsen dextran sodium sulfate-induced colitis by disrupting intestinal ecology.
Topics: Animals; Colitis; Colon; Cytokines; Dextran Sulfate; Disease Models, Animal; Glycine max; Inflammatory Bowel Diseases; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; RNA, Ribosomal, 16S; Sulfates | 2022 |
Melatonin mediated inhibition of EZH2-NOS2 crosstalk attenuates inflammatory bowel disease in preclinical in vitro and in vivo models.
Topics: Animals; Colitis; Dextran Sulfate; Dextrans; Disease Models, Animal; Enhancer of Zeste Homolog 2 Protein; Epigenesis, Genetic; Inflammatory Bowel Diseases; Melatonin; Mice; Nitric Oxide Synthase Type II | 2022 |
Viphyllin™, a standardized extract from black pepper seeds, mitigates intestinal inflammation, oxidative stress, and anxiety-like behavior in DSS-induced colitis mice.
Topics: Animals; Antioxidants; Anxiety; Colitis; Dextran Sulfate; Inflammasomes; Inflammation; Inflammatory Bowel Diseases; Mice; Nigella sativa; NLR Family, Pyrin Domain-Containing 3 Protein; Oxidative Stress; Piper nigrum; Plant Extracts; Polycyclic Sesquiterpenes; Quality of Life; Seeds; Sulfates | 2022 |
Quinoa bran soluble dietary fiber ameliorates dextran sodium sulfate induced ulcerative colitis in BALB/c mice by maintaining intestinal barrier function and modulating gut microbiota.
Topics: Animals; Chenopodium quinoa; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Dietary Fiber; Disease Models, Animal; Gastrointestinal Microbiome; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; RNA, Ribosomal, 16S; Sulfates | 2022 |
Dextran sodium sulfate potentiates NLRP3 inflammasome activation by modulating the KCa3.1 potassium channel in a mouse model of colitis.
Topics: Animals; Colitis; Dextran Sulfate; Disease Models, Animal; Inflammasomes; Inflammatory Bowel Diseases; Intermediate-Conductance Calcium-Activated Potassium Channels; Mice; Mice, Inbred C57BL; NLR Family, Pyrin Domain-Containing 3 Protein; Potassium Channels; Sulfates | 2022 |
Extraction, Chemical Composition, and Protective Effect of Essential Oil from
Topics: Animals; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Mice; Oils, Volatile; Sulfates | 2022 |
Long Noncoding RNA FBXL19-AS1-Mediated Ulcerative Colitis-Associated Intestinal Epithelial Barrier Defect.
Topics: Animals; Cell Proliferation; Colitis; Colitis, Ulcerative; Dextrans; DNA-Binding Proteins; Eosine Yellowish-(YS); Eosinophil Cationic Protein; F-Box Proteins; Hematoxylin; Interleukin-18; Mice; MicroRNAs; RNA, Long Noncoding; Sulfates | 2022 |
Presume Why Probiotics May Not Provide Protection in Inflammatory Bowel Disease through an Azoxymethane and Dextran Sodium Sulfate Murine Model.
Topics: Animals; Azoxymethane; Colitis; Colitis-Associated Neoplasms; Dextran Sulfate; Disease Models, Animal; Dysbiosis; Inflammatory Bowel Diseases; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Probiotics; Sulfates | 2022 |
Hemp-Derived Nanovesicles Protect Leaky Gut and Liver Injury in Dextran Sodium Sulfate-Induced Colitis.
Topics: Animals; Cannabis; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Intestinal Mucosa; Liver; Mice; Mice, Inbred C57BL; Sulfates; Tight Junctions | 2022 |
Diacetylrhein, an anthraquinone antiarthritic agent, suppresses dextran sodium sulfate-induced inflammation in rats: A possible mechanism for a protective effect against ulcerative colitis.
Topics: Animals; Anthraquinones; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Inflammation; Rats; Sulfates | 2022 |
Altered functional responses by PAR1 agonist in murine dextran sodium sulphate-treated colon.
Topics: Animals; Apamin; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Drinking Water; Mice; Mice, Inbred C57BL; Receptor, PAR-1; Receptor, Platelet-Derived Growth Factor alpha; Small-Conductance Calcium-Activated Potassium Channels; Sulfates; Thrombin | 2022 |
Gut-Brain Axis: Insights from Hippocampal Neurogenesis and Brain Tumor Development in a Mouse Model of Experimental Colitis Induced by Dextran Sodium Sulfate.
Topics: Amino Acids; Animals; Brain Neoplasms; Brain-Gut Axis; Carcinogenesis; Colitis; Colon; Cytokines; Dextran Sulfate; Disease Models, Animal; Hippocampus; Inflammation; Inflammatory Bowel Diseases; Interleukin-6; Lipids; Mice; Mice, Inbred C57BL; Neurogenesis; Sulfates; Thiamine; Transforming Growth Factor beta | 2022 |
RNA-Seq approach to investigate the effects of melatonin on bone marrow-derived dendritic cells from dextran sodium sulfate-induced colitis mice.
Topics: Animals; Bone Marrow; Colitis; Colon; Cytokines; Dendritic Cells; Dextran Sulfate; Disease Models, Animal; Melatonin; Mice; Mice, Inbred C57BL; MicroRNAs; Phosphatidylinositol 3-Kinases; RNA-Seq; RNA, Circular; RNA, Long Noncoding; RNA, Messenger; Signal Transduction | 2022 |
Deletion of Smad7 Ameliorates Intestinal Inflammation and Contributes to Fibrosis.
Topics: Animals; Colitis; Collagen; Dextrans; Fibrosis; Inflammation; Mice; Mice, Inbred C57BL; RNA, Messenger; Smad7 Protein; Transforming Growth Factor beta | 2023 |
Protective Effect of Perilla Oil Against Dextran Sodium Sulfate-Induced Colitis in Mice Challenged with a High-Fat Diet.
Topics: Animals; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Diet, High-Fat; Disease Models, Animal; Fish Oils; Male; Mice; Mice, Inbred C57BL; Olive Oil | 2022 |
Transgenerational impacts of oral probiotic administration in pregnant mice on offspring gut immune cells and colitis susceptibility.
Topics: Administration, Oral; Animals; Colitis; Dextran Sulfate; Dextrans; Disease Models, Animal; Female; Humans; Inflammatory Bowel Diseases; Mice; Mice, Inbred C57BL; Pregnancy; Probiotics | 2023 |
Establishment of a Novel Colitis-Associated Cancer Mouse Model Showing Flat Invasive Neoplasia.
Topics: Animals; Azoxymethane; Colitis; Colitis-Associated Neoplasms; Colorectal Neoplasms; Dextran Sulfate; Dextrans; Disease Models, Animal; Humans; Inflammation; Mice; Reproducibility of Results | 2023 |
Polysaccharides from natural
Topics: Animals; Colitis; Colitis, Ulcerative; Colon; Cordyceps; Dextran Sulfate; Dextrans; Disease Models, Animal; Mice; Mice, Inbred C57BL; NF-kappa B | 2023 |
Starch from Pueraria lobata and the amylose fraction alleviates dextran sodium sulfate induced colitis in mice.
Topics: Amylose; Animals; Colitis; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Mice; Mice, Inbred C57BL; Pueraria; Starch | 2023 |
Surfactin Mitigates Dextran Sodium Sulfate-Induced Colitis and Behavioral Disorders in Mice by Mediating Gut-Brain-Axis Balance.
Topics: Animals; Brain; Brain Diseases; Brain-Gut Axis; Coleoptera; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Dysbiosis; Mice; Mice, Inbred C57BL; Occludin | 2023 |
A synbiotic combination of Bifidobacterium longum Bif10 and Bifidobacterium breve Bif11, isomaltooligosaccharides and finger millet arabinoxylan prevents dextran sodium sulphate induced ulcerative colitis in mice.
Topics: Animals; Bifidobacterium; Bifidobacterium breve; Bifidobacterium longum; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Eleusine; Inflammation; Male; Mice; Mice, Inbred C57BL; Synbiotics | 2023 |
Hepatocyte growth factor ameliorates dextran sodium sulfate‑induced colitis in a mouse model by altering the phenotype of intestinal macrophages.
Topics: Animals; Colitis; Dextran Sulfate; Dextrans; Disease Models, Animal; Hepatocyte Growth Factor; Macrophages; Mice; Mice, Inbred C57BL; Phenotype; RNA, Messenger | 2023 |
2'-Fucosyllactose and 3-Fucosyllactose Alleviates Interleukin-6-Induced Barrier Dysfunction and Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Modulating the Intestinal Microbiome.
Topics: Animals; Caco-2 Cells; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Gastrointestinal Microbiome; Humans; Inflammation; Interleukin-6; Intestinal Mucosa; Mice; Mice, Inbred C57BL; Oligosaccharides | 2023 |
Ecological and dynamic analysis of gut microbiota in the early stage of azomethane-dextran sodium sulfate model in mice.
Topics: Animals; Colitis; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Gastrointestinal Microbiome; Mice; Mice, Inbred C57BL | 2023 |
Intestinal Epithelial Cell-Related Alternative Splicing Events in Dextran Sodium Sulfate-Induced Acute Colitis.
Topics: Alternative Splicing; Animals; Colitis; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Epithelial Cells; Inflammatory Bowel Diseases; Intestinal Mucosa; Mice; Mice, Inbred C57BL; Tumor Necrosis Factor Receptor-Associated Peptides and Proteins | 2023 |
Excess Dietary Sugar Alters Colonocyte Metabolism and Impairs the Proliferative Response to Damage.
Topics: Animals; Colitis; Dextrans; Dietary Sugars; Humans; Mice; Pyruvates | 2023 |
Mitigating Effects of Tenebrio molitor Larvae Powder Administration in Mice with Dextran Sodium Sulfate (DSS)- Induced Colitis.
Topics: Animals; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Interleukin-6; Larva; Mice; NF-kappa B; Powders; Signal Transduction; Tenebrio; Tumor Necrosis Factor-alpha | 2023 |
Cod (Gadus) skin collagen peptide powder reduces inflammation, restores mucosal barrier function, and inhibits fibrosis in dextran sodium sulfate-induced colitis in mice.
Topics: Animals; Anti-Inflammatory Agents; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Fibrosis; Inflammation; Mice; Mice, Inbred C57BL; NF-kappa B; Powders | 2023 |
The immunomodulatory effects of probiotics and azithromycin in dextran sodium sulfate-induced ulcerative colitis in rats via TLR4-NF-κB and p38-MAPK pathway.
Topics: Animals; Azithromycin; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Interleukin-10; Interleukin-6; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Quality of Life; Rats; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha | 2023 |
Purification methods to reduce interference by dextran sodium sulfate with quantification of gene expression in intestinal tissue samples from a piglet model of colitis.
Topics: Animals; Colitis; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Gene Expression; Mice; Mice, Inbred C57BL; RNA; Rodent Diseases; Swine; Swine Diseases | 2023 |
Dietary Supplementation of Ancientino Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress.
Topics: Animals; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Dextrans; Dietary Supplements; Disease Models, Animal; Inflammation; Interleukin-6; Mice; Mice, Inbred C57BL; Oxidative Stress | 2023 |
Lactobacillus casei ATCC 393 combined with vasoactive intestinal peptide alleviates dextran sodium sulfate-induced ulcerative colitis in C57BL/6 mice via NF-κB and Nrf2 signaling pathways.
Topics: Animals; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Gastrointestinal Diseases; Lacticaseibacillus casei; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; NF-kappa B; Signal Transduction; Vasoactive Intestinal Peptide | 2023 |
Humanization of the Reaction Specificity of Mouse Alox15b Inversely Modified the Susceptibility of Corresponding Knock-In Mice in Two Different Animal Inflammation Models.
Topics: Animals; Anti-Inflammatory Agents; Arachidonic Acid; Colitis; Dextrans; Disease Models, Animal; Edema; Female; Humans; Inflammation; Mammals; Mice | 2023 |
Transgenic mice overexpressing human ALOX15 under the control of the aP2 promoter are partly protected in the complete Freund's adjuvant-induced paw inflammation model.
Topics: Animals; Anti-Inflammatory Agents; Arachidonate 15-Lipoxygenase; Colitis; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Edema; Female; Freund's Adjuvant; Humans; Inflammation; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic | 2023 |
Shen-Ling-Bai-Zhu-San alleviates the imbalance of intestinal homeostasis in dextran sodium sulfate-induced colitis mice by regulating gut microbiota and inhibiting the NLRP3 inflammasome activation.
Topics: Animals; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; DNA, Ribosomal; Gastrointestinal Microbiome; Inflammasomes; Inflammatory Bowel Diseases; Mice; Mice, Inbred C57BL; NLR Family, Pyrin Domain-Containing 3 Protein | 2024 |
Maize near-isogenic lines with enhanced flavonoids alleviated dextran sodium sulfate-induced murine colitis
Topics: Animals; Anthocyanins; Colitis; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Flavonoids; Gastrointestinal Microbiome; Health Promotion; Inflammation; Inflammatory Bowel Diseases; Mice; Mice, Inbred C57BL; Zea mays | 2023 |
Fermented rice bran supplementation attenuates colonic injury through modulating intestinal aryl hydrocarbon receptor and innate lymphoid cells in mice with dextran sodium sulfate-induced acute colitis.
Topics: Animals; Colitis; Colon; Dextran Sulfate; Dextrans; Dietary Supplements; Disease Models, Animal; Immunity, Innate; Lymphocytes; Mice; Mice, Inbred C57BL; Oryza; Receptors, Aryl Hydrocarbon | 2024 |
Whey Protein Hydrolysate Exerts Anti-Inflammatory Effects to Alleviate Dextran Sodium Sulfate (DSS)-Induced Colitis via Microbiome Restoration.
Topics: Animals; Anti-Inflammatory Agents; Colitis; Colon; Dextran Sulfate; Dextrans; Disease Models, Animal; Mice; Mice, Inbred C57BL; Microbiota; Protein Hydrolysates; Whey | 2023 |
Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice.
Topics: Animals; Colitis; Colon; Dextran Sulfate; Dysbiosis; Fruit; Gastrointestinal Microbiome; Humans; Interleukin-1beta; Interleukin-6; Male; Mice; Sulfates; Tumor Necrosis Factor-alpha; Vaccinium macrocarpon | 2019 |
Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis.
Topics: Animals; Bacteria; Bacteroides; Cinnamomum zeylanicum; Colitis; Cytokines; Dextran Sulfate; Disease Models, Animal; Fatty Acids, Volatile; Feces; Female; Gastrointestinal Microbiome; Helicobacter; Hemoglobins; Inflammatory Bowel Diseases; Mice; Mice, Inbred C57BL; Oils, Volatile; Peroxidase; RNA, Ribosomal, 16S; Sulfates; Toll-Like Receptor 4 | 2020 |
Metabolomic Analysis of the Liver of a Dextran Sodium Sulfate-Induced Acute Colitis Mouse Model: Implications of the Gut-Liver Connection.
Topics: Acute Disease; Animals; Body Weight; Carnitine; Colitis; Colon; Discriminant Analysis; Disease Models, Animal; Gastrointestinal Tract; Least-Squares Analysis; Liver; Male; Metabolome; Metabolomics; Mice, Inbred BALB C; Multivariate Analysis; Proton Magnetic Resonance Spectroscopy; Rats; Sulfates | 2020 |
An engineering probiotic producing defensin-5 ameliorating dextran sodium sulfate-induced mice colitis via Inhibiting NF-kB pathway.
Topics: Animals; Caco-2 Cells; Colitis; Defensins; Dextran Sulfate; Disease Models, Animal; Humans; Intestinal Mucosa; Mice; Mice, Inbred C57BL; NF-kappa B; Probiotics; Sulfates | 2020 |
The deficit in folate and vitamin B12 triggers liver macrovesicular steatosis and inflammation in rats with dextran sodium sulfate-induced colitis.
Topics: Animals; Colitis; Fatty Liver; Folic Acid Deficiency; Inflammation; Liver; Male; Rats, Wistar; Sulfates; Vitamin B 12 Deficiency | 2020 |
Protective effects of tryptophan-catabolizing Lactobacillus plantarum KLDS 1.0386 against dextran sodium sulfate-induced colitis in mice.
Topics: Animals; Bacteria; Colitis; Colitis, Ulcerative; Colon; Cytokines; Gastrointestinal Microbiome; Lactobacillus plantarum; Male; Mice; Mice, Inbred C57BL; Receptors, Aryl Hydrocarbon; Sulfates; Tight Junction Proteins; Tryptophan | 2020 |
miR-223 improves intestinal inflammation through inhibiting the IL-6/STAT3 signaling pathway in dextran sodium sulfate-induced experimental colitis.
Topics: Animals; Colitis; Dextran Sulfate; Disease Models, Animal; Inflammation; Interleukin-6; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Signal Transduction; Sulfates | 2021 |
Induction of colitis-associated neoplasia in mice using azoxymethane and dextran sodium sulfate.
Topics: Animals; Azoxymethane; Colitis; Colonic Neoplasms; Colorectal Neoplasms; Dextran Sulfate; Disease Models, Animal; Mice; Mice, Inbred C57BL; Sulfates | 2021 |
Vitamin C Enema Advances Induction of Remission in the Dextran Sodium Sulfate-Induced Colitis Model in Rats.
Topics: Animals; Ascorbic Acid; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Enema; Intestinal Mucosa; Male; Rats; Rats, Wistar; Remission Induction; Sulfates | 2021 |
Gut microbiota modulation and anti-inflammatory properties of mixed lactobacilli in dextran sodium sulfate-induced colitis in mice.
Topics: Animals; Anti-Inflammatory Agents; Colitis; Colon; Cytokines; Dextran Sulfate; Gastrointestinal Microbiome; Intestines; Lactobacillus; Lactobacillus plantarum; Male; Mice; Mice, Inbred C57BL; Sulfates; Tight Junction Proteins; Tight Junctions | 2021 |
Alisol B 23-Acetate Ameliorates Azoxymethane/Dextran Sodium Sulfate-Induced Male Murine Colitis-Associated Colorectal Cancer
Topics: Animals; Azoxymethane; China; Cholestenones; Colitis; Colitis-Associated Neoplasms; Dextran Sulfate; Disease Models, Animal; Gastrointestinal Microbiome; Male; Mice; Mice, Inbred C57BL; Sulfates | 2021 |
Dietary Bioactive Peptide Alanyl-Glutamine Attenuates Dextran Sodium Sulfate-Induced Colitis by Modulating Gut Microbiota.
Topics: Animals; Colitis; Dipeptides; Gastrointestinal Microbiome; Humans; Inflammatory Bowel Diseases; Male; Mice; Sulfates | 2021 |
[Effect of Banxia Xiexin Decoction on intestinal flora of mice with ulcerative colitis induced by dextran sodium sulfate].
Topics: Animals; Colitis; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Drugs, Chinese Herbal; Gastrointestinal Microbiome; Mice; Mice, Inbred C57BL; Sulfates | 2021 |
Preventive and Prebiotic Effect of α-Galacto-Oligosaccharide against Dextran Sodium Sulfate-Induced Colitis and Gut Microbiota Dysbiosis in Mice.
Topics: Animals; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Dysbiosis; Gastrointestinal Microbiome; Mice; Mice, Inbred C57BL; Oligosaccharides; Prebiotics; Sulfates | 2021 |
Fermented herbal formula KIOM-MA-128 protects against acute colitis induced by dextran sodium sulfate in mice.
Topics: Animals; Anti-Inflammatory Agents; Colitis; Colon; Cytokines; Dextran Sulfate; Drug Compounding; Fermentation; Humans; Intestinal Mucosa; Lacticaseibacillus rhamnosus; Male; Mice; Mice, Inbred ICR; Plant Extracts; Plants, Medicinal; Sulfates; Tight Junctions | 2017 |
Natural dietary compound naringin prevents azoxymethane/dextran sodium sulfate-induced chronic colorectal inflammation and carcinogenesis in mice.
Topics: Animals; Autophagy; Azoxymethane; Biomarkers; Cell Transformation, Neoplastic; Colitis; Colorectal Neoplasms; Cytokines; Dietary Supplements; Disease Models, Animal; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Flavanones; Inflammation Mediators; Intestinal Mucosa; Male; Mice; Sulfates | 2018 |
OPeNing the Epithelial Barrier: Osteopontin Preserves Gut Barrier Function During Intestinal Inflammation.
Topics: Animals; Colitis; Inflammation; Intestinal Mucosa; Mice; Occludin; Osteopontin; Sulfates | 2019 |
Cottonseed Oil Protects Against Intestinal Inflammation in Dextran Sodium Sulfate-Induced Inflammatory Bowel Disease.
Topics: Actins; Animals; Colitis; Collagen Type I; Cottonseed Oil; Dextran Sulfate; Disease Models, Animal; Humans; Interleukin-1beta; Interleukin-6; Male; Mice; Mice, Inbred C57BL; Protective Agents; Sulfates; Tumor Necrosis Factor-alpha | 2019 |
Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis.
Topics: Animals; Chemokines, CC; Colitis; Dextrans; Disease Models, Animal; Inflammation; Male; Mice; Physical Conditioning, Animal; Random Allocation; Running; Stress, Psychological; Sulfates; Weight Loss | 2013 |
Critical roles of TIPE2 protein in murine experimental colitis.
Topics: Animals; Bacteria; Colitis; Colon; Hematopoietic Stem Cells; Inflammation; Intracellular Signaling Peptides and Proteins; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Radiation Chimera; Sulfates | 2014 |
Oral administration of hen egg white ovotransferrin attenuates the development of colitis induced by dextran sodium sulfate in mice.
Topics: Animals; Chickens; Colitis; Conalbumin; Cytokines; Dextrans; Disease Models, Animal; Egg White; Female; Humans; Mice; Mice, Inbred BALB C; Sulfates | 2015 |
Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer.
Topics: Administration, Oral; Animals; Antineoplastic Agents; Azoxymethane; Camptothecin; Cell Line, Tumor; Colitis; Colonic Neoplasms; Dextrans; Drug Delivery Systems; Drug Screening Assays, Antitumor; Endoscopy; Free Radical Scavengers; Inflammation; Irinotecan; Male; Mice; Mice, Inbred ICR; Nanomedicine; Nanoparticles; Neoplasms, Experimental; Nitrogen Oxides; Oxidation-Reduction; Reactive Oxygen Species; Sulfates | 2015 |
Adenine Inhibits TNF-α Signaling in Intestinal Epithelial Cells and Reduces Mucosal Inflammation in a Dextran Sodium Sulfate-Induced Colitis Mouse Model.
Topics: Adenine; Animals; Colitis; Dextran Sulfate; Disease Models, Animal; Epithelial Cells; Female; Humans; Intestinal Mucosa; Mice; Mice, Inbred BALB C; Signal Transduction; Sulfates; Tumor Necrosis Factor-alpha | 2016 |
Purified rutin and rutin-rich asparagus attenuates disease severity and tissue damage following dextran sodium sulfate-induced colitis.
Topics: Animals; Colitis; Colon; Cytokines; Dextran Sulfate; Dietary Supplements; Disease Models, Animal; Inflammation; Interleukin-22; Interleukins; Intestinal Mucosa; Male; Mice; Mice, Inbred C57BL; Rutin; Sulfates | 2016 |
MUC2 Mucin and Butyrate Contribute to the Synthesis of the Antimicrobial Peptide Cathelicidin in Response to Entamoeba histolytica- and Dextran Sodium Sulfate-Induced Colitis.
Topics: Animals; Antimicrobial Cationic Peptides; Butyrates; Cathelicidins; Cell Line; Colitis; Disease Models, Animal; Entamoeba histolytica; Entamoebiasis; Gene Expression; Humans; Intestinal Mucosa; Male; MAP Kinase Signaling System; Mice; Mice, Knockout; Mitogen-Activated Protein Kinases; Mucin-2; RNA, Messenger; Sulfates | 2017 |
Intervention of Isomaltodextrin Mitigates Intestinal Inflammation in a Dextran Sodium Sulfate-Induced Mouse Model of Colitis via Inhibition of Toll-like Receptor-4.
Topics: Animals; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Female; Humans; Interleukin-10; Interleukin-6; Intestines; Mice; Mice, Inbred BALB C; Polysaccharides; Sulfates; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha | 2017 |
l-Tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulfate (DSS)-induced colitis.
Topics: Animal Nutrition Sciences; Animals; Apoptosis; Body Weight; Colitis; Dextrans; Disease Models, Animal; Inflammation; Interleukin-6; Mannitol; Permeability; Sulfates; Swine; Tryptophan; Tumor Necrosis Factor-alpha | 2010 |
Endogenous hydrogen sulfide is an anti-inflammatory molecule in dextran sodium sulfate-induced colitis in mice.
Topics: Alkynes; Animals; Colitis; Cystathionine beta-Synthase; Cystathionine gamma-Lyase; Dextran Sulfate; Gene Expression Regulation, Enzymologic; Glycine; Hydrogen Sulfide; Male; Mice; Mice, Inbred BALB C; RNA, Messenger; Sulfates; Time Factors | 2011 |
Prevention of colitis-associated colorectal cancer with 8-hydroxydeoxyguanosine.
Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Anticarcinogenic Agents; Azoxymethane; Colitis; Colorectal Neoplasms; Deoxyguanosine; Dextrans; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Inflammation; Interleukin-10; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neoplasms; STAT3 Transcription Factor; Sulfates | 2011 |
Reduced susceptibility to colitis-associated colon carcinogenesis in mice lacking plasma membrane-associated sialidase.
Topics: Animals; Azoxymethane; Cell Membrane; Colitis; Colonic Neoplasms; Dextrans; Gangliosides; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Genetic Predisposition to Disease; Genetic Vectors; Genotype; Glycoconjugates; Glycolipids; Mice; Mice, Transgenic; Neuraminidase; Sialic Acids; Sulfates | 2012 |
Lgr4 gene deficiency increases susceptibility and severity of dextran sodium sulfate-induced inflammatory bowel disease in mice.
Topics: Animals; beta Catenin; Bone Marrow Transplantation; Colitis; Dextrans; Drug Discovery; Gene Deletion; Gene Expression Regulation; Genetic Predisposition to Disease; Homeostasis; Inflammatory Bowel Diseases; Mice; Mice, Transgenic; Receptors, G-Protein-Coupled; Regeneration; Signal Transduction; Stem Cells; Sulfates; Thrombospondins; Wnt Proteins | 2013 |
The treatment of chronic ulcerative colitis with sodium hexadecyl sulfate.
Topics: Colitis; Colitis, Ulcerative; Humans; Sodium; Sulfates | 1950 |
Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2.
Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Colitis; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Dextrans; Dinoprostone; Interleukin-1; Intestinal Mucosa; Isoenzymes; Membrane Proteins; Mice; Mice, Mutant Strains; Nitrobenzenes; Prostaglandin-Endoperoxide Synthases; Sulfates; Sulfonamides | 2000 |