sodium-oxybate and Nerve-Degeneration

sodium-oxybate has been researched along with Nerve-Degeneration* in 3 studies

Reviews

1 review(s) available for sodium-oxybate and Nerve-Degeneration

ArticleYear
Neurodegeneration, sleep, and cerebral energy metabolism: a testable hypothesis.
    Journal of geriatric psychiatry and neurology, 1997, Volume: 10, Issue:1

    Varying degrees of metabolic arrest are used by many living species to survive in a harsh environment. For example, in hibernating mammals, neuronal activity and cerebral metabolism are profoundly depressed in most regions of the brain and limited energy resources are deployed to maintain vital cell functions. Gathering evidence suggests that energy resources are also limited in both Alzheimer's and Parkinson's diseases, and that this promotes metabolic stress and the degenerative process. Key steps in this process are energy requiring, and this further compromises cell energy reserves. It may be possible to slow the progress of these diseases by inducing slow-wave sleep (SWS) at night with gammahydroxybutyrate. Patients with these diseases sleep poorly and generate little SWS. SWS and hibernation are thought to be on a continuum of energy conservation. Thus, the induction of SWS may retard the degenerative process by depressing cell metabolism and by directing energy utilization to vital cell functions. In this way, GHB-induced SWS may duplicate the effects of hibernation and extend biologic time.

    Topics: Alzheimer Disease; Animals; Brain; Dementia; Energy Metabolism; Humans; Nerve Degeneration; Parkinson Disease; Sleep Stages; Sodium Oxybate

1997

Other Studies

2 other study(ies) available for sodium-oxybate and Nerve-Degeneration

ArticleYear
Neurotoxic effects induced by gammahydroxybutyric acid (GHB) in male rats.
    The international journal of neuropsychopharmacology, 2009, Volume: 12, Issue:9

    Gammahydroxybutyric acid (GHB) is an endogenous constituent of the central nervous system that has acquired great social relevance for its use as a recreational 'club drug'. GHB, popularly known as 'liquid ecstasy', is addictive when used continuously. Although the symptoms associated with acute intoxication are well known, the effects of prolonged use remain uncertain. We examined in male rats the effect of repeated administration of GHB (10 and 100 mg/kg) on various parameters: neurological damage, working memory and spatial memory, using neurological tests, the Morris water maze and the hole-board test. The results showed that repeated administration of GHB, especially at doses of 10 mg/kg, causes neurological damage, affecting the 'grasping' reflex, as well as alteration in spatial and working memories. Stereological quantification showed that this drug produces a drastic neuronal loss in the CA1 hippocampal region and in the prefrontal cortex, two areas clearly involved in cognitive and neurological functions. No effects were noted after quantification in the periaqueductal grey matter (PAG), a region lacking GHB receptors. Moreover, NCS-382, a putative antagonist of GHB receptor, prevented both neurological damage and working- memory impairment induced by GHB. This suggests that the effects of administration of this compound may be mediated, at least partly, by specific receptors in the nervous system. The results show for the first time that the repeated administration of GHB, especially at very low doses, produces neurotoxic effects. This is very relevant because its abuse, especially by young persons, could produce considerable neurological alterations after prolonged abuse.

    Topics: Animals; Behavior, Animal; Benzocycloheptenes; Cognition; Dose-Response Relationship, Drug; Drug Administration Schedule; Hippocampus; Illicit Drugs; Injections, Intraperitoneal; Male; Memory; Nerve Degeneration; Neurotoxicity Syndromes; Prefrontal Cortex; Rats; Rats, Wistar; Receptors, Cell Surface; Reflex; Sodium Oxybate; Time Factors

2009
Effect of gamma-hydroxybutyrate in two rat models of focal cerebral damage.
    Brain research, 2003, Oct-03, Volume: 986, Issue:1-2

    Gamma-hydroxybutyrate (GHB) and its lactone, gamma-butyrolactone (GBL) have been previously shown to produce a protective effect in animal models of cerebral ischaemia/hypoxia, as well as in human conditions of head injury-induced coma. The aim of the present research was to study the effect of GHB in experimental conditions of focal cerebral damage, either induced by ischaemia or excitotoxicity. Under general anaesthesia, rats were injected into the right striatum with either endothelin-1 (ET-1, 0.43 nmol) or kainic acid (7.5 nmol) in a volume of 1 microl. Sham-lesioned rats received 1 microl of the solvent. Both ET-1- and kainic acid-lesioned rats were randomly assigned to one of the following intraperitoneal (i.p.) treatments: (i) and (ii) GHB, 100 or 300 mg kg(-1) 2 h after the lesion, followed by 50 or 100 mg kg(-1), respectively, every 12 h; (iii) saline, 2 ml kg(-1), same schedule. Sham animals were treated with saline, 2 ml kg(-1), same schedule. Treatments lasted for 10 days. The higher dose of GHB produced a significant protection against the ET-1-induced impairments in sensory-motor orientation and coordinated limb use (evaluated 24 and 42 days after the lesion) and in place learning and memory (Morris test, performed 19 and 39 days after the lesion). The same dose regimen reduced the circling behaviour induced by apomorphine in kainate-lesioned rats (10 days after the lesion), and limited or prevented at all the histological damage produced either by ET-1 or by kainic acid (evaluated 43 or 10 days after the lesion, respectively). These results show that GHB limits both histological and functional consequences of a focal ischaemic or excitotoxic insult of the brain, in rats, even if the treatment is started 2 h after the lesion.

    Topics: Animals; Apomorphine; Brain; Brain Ischemia; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelin-1; Kainic Acid; Learning; Male; Memory Disorders; Motor Activity; Nerve Degeneration; Neuroprotective Agents; Neurotoxins; Rats; Rats, Wistar; Sodium Oxybate

2003