sodium-nitrite has been researched along with Hyperplasia* in 6 studies
6 other study(ies) available for sodium-nitrite and Hyperplasia
Article | Year |
---|---|
Nitrite-generated NO circumvents dysregulated arginine/NOS signaling to protect against intimal hyperplasia in Sprague-Dawley rats.
Vascular disease, a significant cause of morbidity and mortality in the developed world, results from vascular injury. Following vascular injury, damaged or dysfunctional endothelial cells and activated SMCs engage in vasoproliferative remodeling and the formation of flow-limiting intimal hyperplasia (IH). We hypothesized that vascular injury results in decreased bioavailability of NO secondary to dysregulated arginine-dependent NO generation. Furthermore, we postulated that nitrite-dependent NO generation is augmented as an adaptive response to limit vascular injury/proliferation and can be harnessed for its protective effects. Here we report that sodium nitrite (intraperitoneal, inhaled, or oral) limited the development of IH in a rat model of vascular injury. Additionally, nitrite led to the generation of NO in vessels and SMCs, as well as limited SMC proliferation via p21Waf1/Cip1 signaling. These data demonstrate that IH is associated with increased arginase-1 levels, which leads to decreased NO production and bioavailability. Vascular injury also was associated with increased levels of xanthine oxidoreductase (XOR), a known nitrite reductase. Chronic inhibition of XOR and a diet deficient in nitrate/nitrite each exacerbated vascular injury. Moreover, established IH was reversed by dietary supplementation of nitrite. The vasoprotective effects of nitrite were counteracted by inhibition of XOR. These data illustrate the importance of nitrite-generated NO as an endogenous adaptive response and as a pathway that can be harnessed for therapeutic benefit. Topics: Animals; Arginase; Arginine; Cell Proliferation; Cyclin-Dependent Kinase Inhibitor p21; Hyperplasia; Male; Myocytes, Smooth Muscle; Nitric Oxide; Nitric Oxide Synthase Type III; Rats; Rats, Sprague-Dawley; Signal Transduction; Sodium Nitrite; Tunica Intima; Xanthine Dehydrogenase | 2011 |
Promoting effects of combined antioxidant and sodium nitrite treatment on forestomach carcinogenesis in rats after initiation with N-methyl-N'-nitro-N-nitrosoguanidine.
The effects of sodium nitrite (NaNO2), in combination with one of three antioxidants, tert-butylhydroquinone (TBHQ), alpha-tocopherol (alpha-Toc) and propyl gallate (PG), on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) stomach carcinogenesis were investigated in F344 rats. Groups of 15 male rats were treated with an intragastric dose of 150 mg/kg body weight of MNNG, and starting 1 week later, were treated with 0.5% TBHQ, 1% alpha-Toc, 1% PG or basal diet with or without 0.2% NaNO2 in their drinking water until they were killed at the end of week 36. Macroscopically, in MNNG-treated animals, combined administration of alpha-Toc or PG with NaNO2 significantly increased the areas and numbers of forestomach nodules as compared with the respective antioxidant alone values. Microscopically, in MNNG-treated animals, treatment with TBHQ significantly increased the incidence and multiplicity of forestomach papillomas as compared with basal diet alone value. Combined administration of alpha-Toc with NaNO2 significantly raised the multiplicity of forestomach papillomas, with a tendency to elevation in the incidence as compared with the group given alpha-Toc alone. Incidences of forestomach moderate and/or severe hyperplasias were significantly higher in the TBHQ or PG plus NaNO2 groups than in the single compound groups. In rats without MNNG treatment, combined treatment of antioxidants with NaNO2 significantly increased the incidences of mild or moderate hyperplasia. In the glandular stomach, although the incidence of atypical hyperplasia showed a non-significant tendency for decrease with TBHQ treatment, additional administration of NaNO2 caused significant increase. These results indicate that co-administration of NaNO2 with alpha-Toc, TBHQ or PG and particularly the first, promotes forestomach carcinogenesis. Concurrent alpha-Toc, TBHQ or PG treatment with NaNO2 is likely to induce forestomach tumors in the long term. Topics: alpha-Tocopherol; Animals; Antioxidants; Body Weight; Carcinoma, Squamous Cell; Drug Combinations; Drug Interactions; Food Preservatives; Hydroquinones; Hyperplasia; Male; Methylnitronitrosoguanidine; Papilloma; Propyl Gallate; Rats; Rats, Inbred F344; Sodium Nitrite; Stomach Neoplasms | 2002 |
Effects of combined treatment with phenolic compounds and sodium nitrite on two-stage carcinogenesis and cell proliferation in the rat stomach.
The effects of combined treatment with NaNO2 and phenolic compounds on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) stomach carcinogenesis were investigated in F344 rats. In the first experiment, groups of 15-20 male rats were treated with an intragastric dose of 150 mg/kg body weight of MNNG, and starting 1 wk later, were given 2.0% butylated hydroxyanisole, 0.8% catechol, 2.0% 3-methoxycatechol or basal diet either alone or in combination with 0.2% NaNO2 in the drinking water until they were killed at week 52. All three antioxidants significantly enhanced forestomach carcinogenesis without any effect of additional NaNO2 treatment. However, in the absence of MNNG pretreatment, the grade of forestomach hyperplasia in the catechol and 3-methoxycatechol groups was significantly increased by the combined treatment with NaNO2. In a second experiment, the combined effects of various phenolic compounds and NaNO2 on cell proliferation in the upper digestive tract were examined. Groups of 5 rats were given one of 24 phenolic compounds or basal diet either alone or in combination with 0.3% NaNO2 for 4 weeks and then killed. Particularly strong enhancing effects in terms of thickness of the forestomach mucosa were seen with t-butylhydroquinone (TBHQ), catechol, gallic acid, 1,2,4-benzenetriol, dl-3-(3,4-dihydroxyphenyl)-alanine and hydroquinone in combination with NaNO2. In the glandular stomach, similar enhancing effects were evident in 11 cases, and in the esophagus with phenol, TBHQ and gallic acid. These results demonstrate that NaNO2 can augment cell proliferation induced in the stomach epithelium by various phenolic compounds. Topics: Animals; Butylated Hydroxyanisole; Carcinoma, Squamous Cell; Catechols; Cell Division; Hyperplasia; Male; Methylnitronitrosoguanidine; Phenols; Rats; Rats, Inbred F344; Sodium Nitrite; Stomach; Stomach Neoplasms | 1994 |
Effects of sodium nitrite and catechol, 3-methoxycatechol, or butylated hydroxyanisole in combination in a rat multiorgan carcinogenesis model.
Effects of simultaneous treatment with NaNO2 and butylated hydroxyanisole, catechol, or 3-methoxycatechol were examined in a rat multiorgan carcinogenesis model. Groups of 15 animals were given a single i.p. injection of 100 mg/kg of body weight diethylnitrosamine, 4 i.p. injections of 20 mg/kg of body weight N-methylnitrosourea, 4 s.c. injections of 40 mg/kg of body weight dimethylhydrazine, p.o. treatment with 0.05% N-butyl-N-(4-hydroxybutyl)nitrosamine in the drinking water for the first 2 weeks and p.o. treatment with 0.1% 2,2'-dihydroxy-di-n-propylnitrosamine in the drinking water for the next 2 weeks of the initial 4-week initiation period. Starting 3 days after the completion of these carcinogen treatments, animals were given diets containing 2% butylated hydroxyanisole, 0.8% catechol, 2% 3-methoxycatechol, or basal diet either alone or in combination with 0.3% sodium nitrite until week 28, when complete autopsy was performed. Histological examination showed that NaNO2 strongly enhanced development of forestomach lesions but inhibited that of glandular stomach lesions in rats simultaneously given catechol or 3-methoxycatechol with or without prior carcinogen exposure. 3-Methoxycatechol promoted esophageal carcinogenesis either with or without NaNO2, but promoting effects of catechol were evident only in the presence of NaNO2. In addition, treatment with NaNO2 after carcinogen exposure enhanced forestomach carcinogenesis. These results indicate that NaNO2 can modify phenolic antioxidant-induced cell proliferation and/or carcinogenesis, particularly in the upper digestive tract. Topics: Animals; Antioxidants; Body Weight; Butylated Hydroxyanisole; Carcinoma in Situ; Carcinoma, Squamous Cell; Catechols; Cocarcinogenesis; Dimethylhydrazines; Disease Models, Animal; Drug Interactions; Eating; Epithelium; Hyperplasia; Liver; Male; Methylnitrosourea; Neoplasms, Experimental; Organ Size; Rats; Rats, Inbred F344; Sodium Nitrite; Stomach; Stomach Neoplasms | 1993 |
Effects of sodium nitrite and catechol or 3-methoxycatechol in combination on rat stomach epithelium.
The effects of sodium nitrite (NaNO2) and catechol or 3-methoxycatechol in combination were examined in male F344 rats. Animals were treated with 0.3% NaNO2 in the drinking water and 0.8% catechol or 2% 3-methoxycatechol in powdered diet for 24 weeks. While catechol or 3-methoxycatechol alone induced low incidences of mild or moderate hyperplasia, simultaneous administration of NaNO2 markedly enhanced the degree of hyperplasia and papilloma formation. In contrast, induction of submucosal hyperplasia and adenomas in the glandular epithelium was reduced. Thus, the results indicate that NaNO2 can modulate the metabolism of antioxidants, so that, possibly via production of new active moieties, targeting of forestomach epithelium is enhanced. Topics: Adenoma; Animals; Antioxidants; Body Weight; Catechols; Drug Synergism; Epithelium; Feeding Behavior; Hyperplasia; Male; Neoplasms, Experimental; Organ Size; Rats; Rats, Inbred F344; Sodium Nitrite; Stomach; Stomach Diseases; Stomach Neoplasms | 1990 |
Liver and forestomach tumors and other forestomach lesions in rats treated with morpholine and sodium nitrite, with and without sodium ascorbate.
Administration to rats of ascorbate with morpholine and nitrite was previously shown to inhibit the liver tumor production and to enhance the induction of forestomach tumors, as compared to treatment with morpholine and nitrite. In a repetition of this experiment, 10 g morpholine/kg in the diet and 2 g sodium nitrite/liter in the drinking water were administered for life to male MRC-Wistar rats without (group 1) or with (group 2) 22.7 g sodium ascorbate/kg in the diet. Group 3 was untreated. Group 2 showed a lower liver tumor incidence with a longer latency than group 1, indicating a 78% inhibition by ascorbate of in vivo N-nitrosomorpholine (NMOR) formation. The incidence of forestomach papillomas was 3% in group 1, 38% in group 2, and 8% in group 3. The difference between groups 1 and 2 was not significant due to the shorter life-span of group 1. Group 1 and especially group 2 had more forestomach hyperplasia and hyperkeratosis than group 3. Ascorbate might have enhanced induction of these lesions because of an action synergistic with that of NMOR. However, it is most likely that the lowered NMOR dose and concomitantly increased survival produced by the ascorbate were solely responsible for the increased incidence of forestomach papillomas and other lesions in group 2. Topics: Animals; Ascorbic Acid; Diet; Drug Interactions; Esophagus; Hyperplasia; Liver Neoplasms; Male; Morpholines; Nitrites; Nitrosamines; Papilloma; Rats; Sodium Nitrite; Stomach; Stomach Neoplasms; Time Factors | 1983 |