sodium-lactate has been researched along with Shock--Septic* in 5 studies
5 other study(ies) available for sodium-lactate and Shock--Septic
Article | Year |
---|---|
The Harmful Effects of Hypertonic Sodium Lactate Administration in Hyperdynamic Septic Shock.
Hypertonic sodium lactate (HTL) expands intravascular volume and may provide an alternative substrate for cellular metabolism in sepsis. We compared the effects of HTL, hypertonic saline (HTS), 0.9% ("normal") saline (NS) and Ringer's lactate (RL) on hemodynamics, sublingual and renal microcirculation, renal, mesenteric and brain perfusion, renal and cerebral metabolism, and survival in anesthetized, mechanically ventilated, adult female sheep. Animals (7 in each group) were randomized to receive a bolus (over 15-min) of 3 mL/kg 0.5 M HTL, 3 mL/kg 3% HTS, 10.8 mL/kg NS, or 10.8 mL/kg RL at 2, 6, and 10 h after induction of fecal peritonitis, followed by 2-h infusions of 1 mL/kg/h (HTL/HTS groups) or 3.6 mL/kg/h (NS/RL groups). Animals also received RL and hydroxyethyl starch (ratio 1:1) titrated to maintain pulmonary artery occlusion pressure at baseline levels throughout the experiment. Animals were observed until their spontaneous death. Fluid balance was lower in the HTL and HTS groups than in the other groups from 4 h. Hemodynamic variables were similar among groups during the first 12 h, but thereafter the HTL group had more pronounced decreases in blood pressure and cardiac function. Sublingual and renal microcirculatory abnormalities occurred earlier in the HTL group. Kidney and brain perfusion decreased more rapidly in the HTL group. Median survival times were significantly shorter in the HTL (17 h) and NS (16 h) groups than in the HTS (22 h) or RL (20 h) groups (P = 0.0029). In conclusion, in an ovine model of septic shock, administration of HTL was associated with earlier onset impaired tissue perfusion and shorter survival time. These observations raise concerns about use of HTL in septic shock. Topics: Animals; Blood Pressure; Brain; Female; Fluid Therapy; Hemodynamics; Isotonic Solutions; Kidney; Microcirculation; Resuscitation; Ringer's Lactate; Sheep; Shock, Septic; Sodium Lactate | 2016 |
Plasma Intermedin Level Indicates Severity and Treatment Efficacy of Septic Shock in Sprague-Dawley (SD) Rats.
BACKGROUND The aim of this study was to investigate the value of plasma intermedin (IMD) in assessing severity and treatment efficacy of septic shock. MATERIAL AND METHODS Healthy male Sprague-Dawley (SD) rats were chosen and divided into a normal control group (n=15) and a shock model group (n=27) that received intravenous injection of lipopolysaccharide (LPS). Then, 3 specimens were taken from each group. The shock model group rats were divided into an LPS group and a treatment group with 12 rats each. The treatment group received intravenous injection of compound sodium lactate solution. Plasma IMD and IMD1-47 mRNA expressions were compared and analyzed. RESULTS Mean arterial pressure (MAP) was lower while white blood cell count and TNF-α were higher in the shock model group than in the normal control group (P<0.05). After 10 h and 20 h, the treatment group had lower plasma IMD and IMD1-47 mRNA expressions compared with the LPS group (P<0.05). Plasma IMD and IMD1-47 mRNA expressions in the LPS group after 20 h were significantly higher than after 10 h (P<0.05). IMD was positively correlated with interleukins (IL-3, IL-6, and IL-8), white blood cell count, and body temperature (all P<0.05), but were negatively correlated with systolic pressure (r=-0.8474, P=0.0040). CONCLUSIONS Plasma IMD level can effectively reflect the severity of septic shock and can be used as an important indicator of septic shock treatment effectiveness. Topics: Adrenomedullin; Animals; Biomarkers, Pharmacological; Injections, Intravenous; Interleukins; Lipopolysaccharides; Male; Neuropeptides; Rats; Rats, Sprague-Dawley; RNA, Messenger; Shock, Septic; Sodium Lactate; Treatment Outcome | 2016 |
Hypertonic sodium lactate improves fluid balance and hemodynamics in porcine endotoxic shock.
Based on the potential interest in sodium lactate as an energy substrate and resuscitative fluid, we investigated the effects of hypertonic sodium lactate in a porcine endotoxic shock.. Fifteen anesthetized, mechanically ventilated pigs were challenged with intravenous infusion of E. coli endotoxin. Three groups of five animals were randomly assigned to receive 5 mL/kg/h of different fluids: a treatment group received hypertonic sodium lactate 11.2% (HSL group); an isotonic control group receiving 0.9% NaCl (NC group); a hypertonic control group with the same amount of osmoles and sodium than HSL group receiving hypertonic sodium bicarbonate 8.4% (HSB group). Hemodynamic and oxygenation variables, urine output and fluid balance were measured at baseline and at 30, 60, 120, 210 and 300 min. Skin microvascular blood flow at rest and during reactive hyperemia was obtained using a laser Doppler flowmetry technique. Results were given as median with interquartile ranges.. Endotoxin infusion resulted in hypodynamic shock. At 300 min, hemodynamics and oxygenation were significantly enhanced in HSL group: mean arterial pressure (103 [81-120] mmHg vs. 49 [41-62] in NC group vs. 71 [60-78] in HSB group), cardiac index (1.6 [1.2-1.8] L/min/m2 vs. 0.9 [0.5-1.1] in NC group vs. 1.3 [0.9-1.6] in HSB group) and partial pressure of oxygen (366 [308-392] mmHg vs. 166 [130-206] in NC group vs. 277 [189-303] in HSB group). At the same time, microvascular reactivity was significantly better in HSL group with a lower venoarterial CO2 tension difference (5.5 [4-10] mmHg vs. 17 [14-25] in NC group vs. 14 [12-15] in HSB group). The cumulative fluid balance was lower in HSL group (-325 [-655; -150] mL) compared to NC (+560 [+230; +900] mL, p = 0.008) and HSB (+185 [-110; +645] mL, p = 0.03) groups.. In our hypodynamic model of endotoxic shock, infusion of hypertonic sodium lactate improves hemodynamic and microvascular reactivity with a negative fluid balance and a better oxygenation. Topics: Animals; Blood Glucose; Disease Models, Animal; Female; Fluid Therapy; Hemodynamics; Hydrogen-Ion Concentration; Hypertonic Solutions; Infusions, Intravenous; Kidney; Lactic Acid; Microcirculation; Prospective Studies; Random Allocation; Shock, Septic; Sodium Lactate; Swine; Urine; Water-Electrolyte Balance | 2014 |
Abnormal saline: the unphysiological bag of brine.
Topics: Animals; Female; Fluid Therapy; Hemodynamics; Microcirculation; Shock, Septic; Sodium Lactate; Water-Electrolyte Balance | 2014 |
Hyperosmolar sodium-lactate in the ICU: vascular filling and cellular feeding.
Hyperosmolar lactate-based solutions have been used for fluid resuscitation in ICU patients. The positive effects observed with these fluids have been attributed to both lactate metabolism and the hypertonic nature of the solutions. In a recent issue of Critical Care, Duburcq and colleagues studied three types of fluid infused at the same volume in a porcine model of endotoxic shock. The control group was resuscitated with 0.9% NaCl, and the two other groups received either hypertonic sodium-lactate or hypertonic sodium-bicarbonate. The two hypertonic fluids proved to be more effective than 0.9% NaCl for resuscitation in this model. However, some parameters were more effectively corrected by hypertonic sodium-lactate than by hypertonic sodium-bicarbonate, suggesting that lactate metabolism was beneficial in these cases. Topics: Animals; Female; Fluid Therapy; Hemodynamics; Microcirculation; Shock, Septic; Sodium Lactate; Water-Electrolyte Balance | 2014 |