sodium-lactate and Hypoxia

sodium-lactate has been researched along with Hypoxia* in 3 studies

Other Studies

3 other study(ies) available for sodium-lactate and Hypoxia

ArticleYear
Mild hypoxia in vivo regulates cardioprotective SUR2A: A role for Akt and LDH.
    Biochimica et biophysica acta, 2015, Volume: 1852, Issue:5

    High-altitude residents have lower mortality rates for ischaemic heart disease and this is ascribed to cardiac gene remodelling by chronic hypoxia. SUR2A is a cardioprotective ABC protein serving as a subunit of sarcolemmal ATP-sensitive K(+) channels. The purpose of this study was to determine whether SUR2A is regulated by mild hypoxia in vivo and to elucidate the underlying mechanism. Mice were exposed to either 21% (control) or 18% (mild hypoxia) oxygen for 24h. Exposure to 18% oxygen did not affect partial pressure of O(2) (PO(2)) and CO(2) (PCO(2)) in the blood, haematocrit or level of ATP in the heart. However, hypoxia increased myocardial lactate dehydrogenase (LDH) and lactate as well as NAD(+) without affecting total NAD. SUR2A levels were significantly increased as well as myocardial resistance to ischaemia-reperfusion. Exposure to 18% oxygen did not phosphorylate extracellular signal regulated kinases (ERK1/2) or AMP activated protein kinase (AMPK), but it phosphorylated protein kinase B (Akt). An inhibitor of phosphoinositide 3-kinases (PI3K), LY294002 (0.2mg/mouse), abolished all observed effects of hypoxia. LDH inhibitors, galloflavin (50 μM) and sodium oxamate (80 mM) significantly decreased levels of SUR2A in heart embryonic H9c2 cells, while inactive mutant LDH form, gly193-M-LDH increased cellular sensitivity towards stress induced by 2,4-dinitrophenol (10mM). Treatment of H9c2 cells with sodium lactate (30 mM) increased intracellular lactate, but did not affect LDH activity or SUR2A levels. We conclude that PI3K/Akt signalling pathway and LDH play a crucial role in increase of cardiac SUR2A induced by in vivo exposure to 18% oxygen.

    Topics: Animals; Blotting, Western; Cardiotonic Agents; Cell Hypoxia; Cell Line; Chromones; Enzyme Inhibitors; Female; Hypoxia; L-Lactate Dehydrogenase; Lactates; Male; Mice, Inbred C57BL; Morpholines; Mutation; Myocardial Reperfusion Injury; Myocytes, Cardiac; NAD; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Signal Transduction; Sodium Lactate; Sulfonylurea Receptors

2015
Intracellular Ca2+ modulation during short exposure to ischemia-mimetic factors in isolated rat ventricular myocytes.
    Collegium antropologicum, 2009, Volume: 33 Suppl 2

    We investigated the effects of different ischemia-mimetic factors on intracellular Ca2+ concentration ([Ca2+]i). Ventricular myocytes were isolated from adult Wistar rats, and [Ca2+]i was measured using fluorescent indicator fluo-4 AM by confocal microscopy. Intracellular pH was measured using c5-(and-6)-carboxy SNARF-1 AM, a dual emission pH-sensitive ionophore. Myocytes were exposed to hypoxia, extracellular acidosis (pH(o) 6.8), Na-lactate (10 mM), or to combination of those factors for 25 min. Monitoring of [Ca2+]i using fluo-4 AM fluorescent indicator revealed that [Ca2+]i accumulation increased immediately after exposing the cells to Na-lactate and extracellular acidosis, but not during cell exposure to moderate ischemia. Increase in [Ca2+]i during Na-lactate exposure decreased to control levels at the end of exposure period at extracellular pH 7.4, but not at pH 6.8. When combined, Na-lactate and acidosis had an additive effect on [Ca2+]i increase. After removal of solutions, [Ca2+]i continued to rise only when acidosis, hypoxia, and Na-lactate were applied together. Analysis of intracellular pH revealed that treatment of cells by Na-lactate and acidosis caused intracellular acidification, while short ischemia did not significantly change intracellular pH. Our experiments suggest that increase in [Ca2+]i during short hypoxia does not occur if pH(i) does not fall, while extracellular acidosis is required for sustained rise in [Ca2+]i induced by Na-lactate. Comparing to the effect of Na-lactate, extracellular acidosis induced slower [Ca2+]i elevation, accompanied with slower decrease in intracellular pH. These multiple effects of hypoxia, extracellular acidosis, and Na-lactate are likely to cause [Ca2+]i accumulation after the hypoxic stress.

    Topics: Acidosis; Animals; Calcium; Cells, Cultured; Extracellular Space; Heart Ventricles; Hydrogen-Ion Concentration; Hypoxia; Male; Myocardial Reperfusion Injury; Myocytes, Cardiac; Rats; Rats, Wistar; Sodium Lactate

2009
Changes in intracellular Na+ and pH in rat heart during ischemia: role of Na+/H+ exchanger.
    The American journal of physiology, 1999, Volume: 276, Issue:5

    The role of the Na+/H+ exchanger in rat hearts during ischemia and reperfusion was investigated by measurements of intracellular Na+ concentration ([Na+]i) and intracellular and extracellular pH. Under our standard conditions (2-Hz stimulation), 10 min of ischemia caused no significant rise in [Na+]i but an acidosis of 1.0 pH unit, suggesting that the Na+/H+ exchanger was inactive during ischemia. This was confirmed by showing that the Na+/H+ exchange inhibitor methylisobutyl amiloride (MIA) had no effect on [Na+]i or on intracellular pH during ischemia. However, there was a short-lived increase in [Na+]i of 8.2 +/- 0.6 mM on reperfusion, which was reduced by MIA, showing that the Na+/H+ exchanger became active on reperfusion. To investigate the role of metabolic changes, we measured [Na+]i during anoxia. The [Na+]i did not change during 10 min of anoxia, but there was a small, transient rise of [Na+]i on reoxygenation, which was inhibited by MIA. In addition, we show that the Na+/H+ exchanger, tested by sodium lactate exposure, was inhibited during anoxia. These results show that the Na+/H+ exchanger is inhibited during ischemia and anoxia, probably by an intracellular metabolic mechanism. The exchanger activates rapidly on reperfusion and can cause a rapid rise in [Na+]i.

    Topics: Acidosis; Amiloride; Animals; Benzofurans; Benzopyrans; Ethers, Cyclic; Female; Fluorescent Dyes; Heart Ventricles; Hydrogen-Ion Concentration; Hypoxia; Muscle Fibers, Skeletal; Myocardial Ischemia; Myocardium; Naphthols; Organ Culture Techniques; Rats; Rats, Sprague-Dawley; Rhodamines; Sodium; Sodium Lactate; Sodium-Hydrogen Exchangers; Ventricular Function, Left

1999