sodium-hypochlorite has been researched along with Respiratory-Tract-Diseases* in 2 studies
1 review(s) available for sodium-hypochlorite and Respiratory-Tract-Diseases
Article | Year |
---|---|
The clinical toxicology of sodium hypochlorite.
Sodium hypochlorite is used as a bleaching and disinfecting agent and is commonly found in household bleach.. The objective is to review critically the epidemiology, mechanisms of toxicity, clinical features, diagnosis, and management of hypochlorite poisoning.. PubMed was searched from January 1950 to June 2018 using the terms "Hypochlorite", "Sodium Hypochlorite", "Sodium Oxychloride", "Hypochlorous Acid", "Bleach", "Chlorine Bleach", in combination with the keywords "poisoning", "poison", "toxicity", "ingestion", "adverse effects", "overdose", and "intoxication". In addition, bibliographies of identified articles were screened for additional relevant studies including non-indexed reports. Non-peer-reviewed sources were also included. These searches produced 110 citations which were considered relevant.. There is limited information regarding statistical trends on world-wide poisoning from sodium hypochlorite. In the United States of America, poison control center data have shown that enquiries regarding hypochlorite bleaches have ranged from 43,000 to 46,000 per year over the period 2012-2016. Mechanisms of toxicity: Hypochlorite's potential to cause toxicity is related to its oxidizing capacity and the pH of the solution. Toxicity arises from its corrosive activity upon contact with mucous membranes and skin. Features following ingestion: While small accidental ingestions are very unlikely to cause clinically significant toxicity, large ingestions may cause corrosive gastrointestinal injury and systemic effects, including metabolic acidosis, hypernatremia, and hyperchloremia. Features following dental exposure: Hypochlorite is used extensively by dentists for cleaning root canals and is safe if the solution remains within the root canal. Extrusions into the periapical area can result in severe pain with localized large and diffuse swelling and hemorrhage. Features following skin exposure: Prolonged or extensive exposure may cause skin irritation and damage to the skin or dermal hypersensitivity. Such exposures can result in either immediate or delayed-type skin reactions. High concentration solutions have caused severe chemical skin burns. Features following inhalation: Although there are only limited data, inhalation of hypochlorite alone is likely to lead to no more than mild irritation of the upper airways. Features following ocular exposure: Corneal injuries from ocular exposure are generally mild with burning discomfort and superficial disturbance of the corneal epithelium with recovery within 1 or 2 days. With higher concentration solutions, severe eye irritation can occur.. The diagnosis can typically be made on the basis of a careful history, including details of the specific product used, its hypochlorite concentration, and the amount involved. As hypochlorite bleach produces a characteristic smell of chlorine, this may provide a diagnostic clue. In severe cases, corrosive injury is suggested on presentation because of hypersalivation, difficulty swallowing, retrosternal pain or hematemesis.. Symptom-directed supportive care is the mainstay of management. Gastrointestinal decontamination is not beneficial. Local corrosive injury is the major focus of treatment in severe cases. Fiberoptic endoscopy and CT thorax/abdomen are complimentary and have been shown to be useful in corrosive injuries in assessing the severity of injury, risk of mortality and risk of subsequent stricture formation and should be performed as soon as possible after ingestion. Dental periapical extrusion injuries should be left open for some minutes to allow bleeding through the tooth and to limit hematoma development in tissue spaces. Once the bleeding has ceased, the canal can be dressed with non-setting calcium hydroxide and sealed coronally.. Accidental ingestion of household bleach is not normally of clinical significance. However, those who ingest a large amount of a dilute formulation or a high concentration preparation can develop severe, and rarely fatal, corrosive injury so prompt supportive care is essential as there is no specific antidote. Treatment primarily consists of symptom-directed supportive care. Topics: Acidosis; Animals; Disinfectants; Eye Diseases; Humans; Hypernatremia; Inhalation Exposure; Oxidants; Poisoning; Prognosis; Respiratory Tract Diseases; Risk Assessment; Skin Diseases; Sodium Hypochlorite; Tooth Bleaching Agents | 2019 |
1 other study(ies) available for sodium-hypochlorite and Respiratory-Tract-Diseases
Article | Year |
---|---|
Chlorine gas release associated with employee language barrier--Arkansas, 2011.
On June 27, 2011, a worker at a poultry processing plant in Arkansas began to pour sodium hypochlorite into a 55-gallon drum that contained residual acidic antimicrobial solution. When the sodium hypochlorite reacted with the solution, greenish-yellow chlorine gas was released into the small room where the drum was located and then spread into the plant, where approximately 600 workers were present. These workers promptly were evacuated. Chlorine is a respiratory irritant and can produce symptoms ranging from mild eye, nose, and throat irritation to severe inflammation of the lung, which can lead to death. Of the approximately 600 workers who were evacuated; 545 were later interviewed, 195 reported seeking medical treatment, 152 reported being hospitalized, and the plant nurse reported that five were admitted to intensive-care units. The next day, the Occupational Safety and Health Administration (OSHA) asked for technical assistance from CDC's National Institute for Occupational Safety and Health (NIOSH) to evaluate health effects of the release and make recommendations to prevent future occurrences. This report describes the results of that evaluation, including findings from two follow-up site visits conducted approximately 4 and 6 months after the release. Of the 545 workers who participated in the evaluation, three developed reactive airways dysfunction syndrome (RADS), an irritant-induced form of asthma that can persist for life. The worker who inadvertently mixed the two solutions indicated that the drum was labeled in English but he could only read Spanish. This incident underscores the danger posed by chlorine gas and the importance of employers providing adequate training and communication of health and safety precautions to employees. Topics: Adolescent; Adult; Aged; Animals; Anti-Infective Agents; Arkansas; Asthma; Chlorine; Communication Barriers; Eye Diseases; Female; Humans; Hydrogen-Ion Concentration; Language; Male; Middle Aged; National Institute for Occupational Safety and Health, U.S.; Occupational Exposure; Poultry; Respiratory Tract Diseases; Sodium Hypochlorite; United States; Young Adult | 2012 |